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Abstract. In this paper we propose a new branch and bound algorithm using a rectangular partition
and ellipsoidal technique for minimizing a nonconvex quadratic function with box constraints. The
bounding procedures are investigated by d.c. (difference of convex functions) optimization algo-
rithms, called DCA. This is based upon the fact that the application of the DCA to the problems
of minimizing a quadratic form over an ellipsoid and/or over a box is efficient. Some details of
computational aspects of the algorithm are reported. Finally, numerical experiments on a lot of test
problems showing the efficiency of our algorithm are presented.

Key words: Branch and bound, Ellipsoidal technique, d.c. Optimization, DCA, Ball constrained
quadratic problem, Box constrained quadratic problem

1. Introduction

We shall be concerned with the well-known problem

(QB) min

{
f (x) :=1

2
〈x,Ax〉 + 〈b, x〉 :

−∞ < li ≤ xi ≤ ui < +∞, i = 1, . . . , n

}
with A being an(n × n) symmetric matrix, andb, x ∈ R

n . A special case of
(QB) is the unconstrained quadratic zero-one problem which has many impor-
tant applications, particularly in combinatorial optimization, and is formulated as
follows

min

{
f (x) := 1

2
〈x,Ax〉 + 〈b, x〉 : x ∈ {0,1}n

}
. (1)
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172 LE THI HOAI AN AND PHAM DINH TAO

Indeed, writing (1) in the form

min
{

1

2
〈x,Ax〉 + 〈b, x〉 + t

2
(〈e, x〉 − 〈x, x〉) : x ∈ {0,1}n

}
, (2)

we have

(2)⇔ min

{
1

2
〈x, (A− tI )x〉 +

〈
b + t

2
e, x

〉
: x ∈ [0,1]n

}
, (3)

wheree is the vector of ones andt is a real scalar such thatA − tI is negative
semidefinite.

Several algorithms have been proposed for globally solving these problems [see,
e.g., 3, 8, 9, 11, 15–17, 30–32, 40, 42]. More generally, there exists in the literature
a lot of methods for solving the nonconvex quadratic programming, among them
branch-and-bound algorithms whose branching operation takes places only in the
‘negative eigenvalues space’ have been shown to be efficient [see e.g. 4, 20, 39, 41,
53].

The procedures often used in the existing methods are to relax the constraints
and to perturb the objective function. The branching is usually base dupon rectan-
gular and/or simplicial partitions.

Ellipsoidal techniques have been used to state estimations for optimal values in
nonconvex quadratic programming [21–23, 53, 54]. In Vavasis [53] an approxima-
tion algorithm was proposed for finding anε-approximate solution. It was shown
that such an approximation can be found in polynomial time for fixedε and t ,
where t denotes the number of negative eigenvalues of the quadratic term. In a
series of paper by N. Karmarkar et al. [21–23], continuous methods for integer
quadratic programs (more precisely the linear inequality{−1,1} satisfiability prob-
lem which is equivalently translated into maximizing the square of Euclidean norm
on [−1,1]n subject to linear inequalities) have been investigated. These methods
used ellipsoidal techniques (each iteration requires solving a nonconvex quadratic
program over an ellipsoid), interior point algorithm [22], and Riemannian metric
for defining the search region [21, 23].

In [23] a new variant is introduced Karmarkar et al. [22] where the Riemannian
metric used for finding the search region is dynamically modified. Their approaches
are basically different from ours. For globally solving a nonconvex quadratic
program on an ellipsoid, N. Karmarker et al. used an adapted version of Moré-
Sorensen’s algorithm [29]. It has been recognized that the latter is expensive to
implement (because it uses Cholesky factorization procedure) and non suitable to
the large scale setting. The recent powerful algorithms by Sorensen [50], Santos &
Sorensen [47, an improved version of 50] and by Rendl & Wolkowicz [45] aimed
to remedy the above mentioned drawback.

The method we study in this paper is a combination of the branch and bound al-
gorithm and the d.c. optimization approach. The d.c. optimization algorithm (called
DCA) introduced by Pham Dinh Tao [33], is a primal-dual subdifferential method
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CONSTRAINED NONCONVEX QUADRATIC PROBLEMS 173

for solving a general d.c. program of the form

(Pdc) α = inf{F(x) = g(x)− h(x) : x ∈ Rn}, g, h ∈ 00(R
n )

and its dual given by

(Ddc) α = inf{h∗(y)− g∗(y) : y ∈ Y }.
Here00(R

n ) is the set of all proper lower semi-continuous convex functions onR
n

which is equipped with the canonical inner product〈·, ·〉, Y is the dual space ofRn

which can be identified withRn itself, g∗ is the conjugate function belonging to
00(Y ) and is defined by

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ Rn }.
Based on the d.c. duality and the local optimality, the DCA consists in the

construction of two sequences{xk} and{yk} such thatxk (resp.yk) is a solution
to the convex program(Pk) (resp.(Dk)) defined by

min{g(x)− [h(xk)+ 〈x − xk, yk〉] : x ∈ X}, (Pk)

min{h∗(y)− [g∗(yk−1)+ 〈xk, y − yk−1〉] : y ∈ Y }. (Dk)

In fact, (Pk) (resp.(Dk)) is obtained from(Pdc) (resp.(Ddc)) by replacingh (resp.
g∗) with its affine minorization defined byyk ∈ ∂h(xk) (resp.x ∈ ∂g∗(yk−1)). In
other words, starting with ax0 in dom∂h, the DCA reads

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk).
By this way, the sequences{xk} and{yk} satisfy the following conditions [1, 33,
37]:

(i) The sequences{g(xk)− h(xk)} and{h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)− h(xk+1) = g(xk)− h(xk) if and only if yk ∈ ∂g(xk)∩ ∂h(xk),
yk ∈ ∂g(xk+1) ∩ ∂h(xk+1) and[ρ(g)+ ρ(h)]‖xk+1 − xk‖ = 0.
• h∗(yk+1)− g∗(yk+1) = h∗(yk)− g∗(yk) if and only if xk+1 ∈ ∂g∗(yk) ∩
∂h∗(yk), xk+1 ∈ ∂g∗(yk+1)∩∂h∗(yk+1) and[ρ(g∗)+ρ(h∗)]‖yk+1−yk‖ =
0.
(ρ(g) denotes the modulus of strong convexity ofg).

(ii) Every limit point x∗ (resp.y∗) of the sequence{xk} (resp.{yk}) is a critical
point ofg − h (resp.h∗ − g∗).

(Remember that a pointx is calledcritical point of g − h if ∂g(x) ∩ ∂h(x) 6= ∅).
Important and interesting questions in the use of the DCA are the choice of the

d.c. decomposition of the objective function and the initial pointx0 to ensure con-
vergence of the DCA to a global minimizer. They are open questions to be studied
for the specific structure of the problem being considered. This d.c. optimization
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approach has been improved and completed from both theoretical and numerical
viewpoints after the works of the authors of this paper appeared in which the DCA
has been successfully applied to many large-scale d.c. optimization problems [see,
e.g., 1, 2, 37 and references therein].

The DCA plays a key role in this paper. The first use of the DCA deals with the
lower bound computation scheme. We apply the DCA to solve the problem (QE)
which is obtained from (QB) by replacing the box constraint with an ellipsoid
containing the selected box. Our main motivation for the use of this technique
is that the DCA is very efficient for globally minimizing a quadratic form over
an Euclidean ball [37]. The second use concerns the upper bound computation
process. For finding a good quality of feasible solutions we apply the DCA to
solving (QB) from good starting points which are obtained while computing lower
bounds. Having its source in the theory of d.c. optimization, DCA is a new al-
gorithmic concept for solving d.c. programs. For both box constrained nonconvex
quadratic programs and ball constrained nonconvex quadratic programs DCA re-
quires only matrix-vector produces and proved to be very efficient and robust [1,
37]. In particular for the latter (which constitutes an important step in our algo-
rithm) many numerical experiments have shown the efficiency and robustness of
DCA with respect to Sorensen’s algorithm [50], Santos–Sorensen’s algorithm [47]
and Rendl–Wolkowicz’s algorithm [45].

In the next section we describe the branch and bound scheme for solving (QB).
First, we present in Subsection 2.1 the procedure for computing lower bounds. This
is based on the DCA for the ball constrained quadratic problem. In Subsection 2.2
we study the DCA for minimizing a quadratic form over a box. The branching
procedure is discussed in the next subsection. In the last subsection we provide
the summary of the branch and bound algorithm and its convergence. In Section 3
the implementation of our algorithm and some illustrative examples to it are given.
Using an affine linear transformation we propose a very simple implementation
of the algorithm which does not need a large memory storage. A variant of our
branch and bound algorithm is presented in Section 4. There, we introduce a second
process for lower bounding in which a convex underestimation of the objective
function is considered. Finally, in Section 5 we present computation results on
several classes of test problems, among them is Spin-glass problem which has an
important application in physics.

2. A branch and bound algorithm via DCA and ellipsoidal technique
(BDCE)

The algorithm we are going to describe starts with an ellipsoidE0 containing the
feasible regionK0 of (QB). If a minimizer off overE0 is feasible then we stop
the process. Otherwise, we divideK0 into two rectangles (rectangular bisection)
and construct two ellipsoids such that each of them contains one of the just divided
rectangles. To improve the lower bound we compute minima off on each newly
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generated ellipsoid. The procedure is then repeated by replacingK0 by a rectangle
corresponding to the smallest lower bound andE0 with an ellipsoid containing
this rectangle. As this procedure repeats infinitely many times two infinite nested
sequences of rectangles and ellipsoids are generated and shrink to a singleton. The
convergence of the algorithm thus is ensured.

2.1. LOWER BOUND – GLOBALLY SOLVING BALL CONSTRAINED QUADRATIC

PROBLEM BY THE DCA

For general polyhedral convex setsKk it is easier to use the technique of halving
ellipsoids for constructing the ellipsoidEk (of minimal volume) containingKk .
In our problem the simple rectangular shape ofKk makes possible the following
construction ofEk which seems to be better (at least in practice) than the Löwner-
John process.

Let S be the ball with the centre at origin and of radius
√
n containing the

rectangleT = [−1,1]n
S = {x ∈ Rn : ‖x‖ ≤ √n}.

Using the bijective affine transformationL such thatT = LK, we can define an
ellipsoidE containing the rectangularK = ∏n

i=1 [ai, ti] as follows:

E = {x ∈ Rn : 〈D2x, x〉 + 2〈Dc, x〉 ≤ n− 〈c, c〉} = L−1S, (4)

whereD = diag(d1, . . . , dn), d, c ∈ Rn and satisfy

dj = 2/(tj − aj ), j = 1, . . . , n, (5)

cj = (aj + tj )/(aj − tj ), j = 1, . . . , n. (6)

Moreover, we obtain the following connection between the volumes ofE andS:

vol(E) = vol(S)

d1d2 · · · dn . (7)

Since the subrectanglesKk = ∏n
i=1 [aki , tki ] shrink to a singleton, the numbers

dki = 2/(tki − aki ) for i = 1, . . . , n tend to+∞. Hence the sequence{vol(Ek)}
decreases to zero ask→+∞.

The lower bound off in our algorithm is improved by the solution of the
problem

(QE) min
{

1

2
〈x,Ax〉 + 〈b, x〉 : x ∈ E

}
.

Again by the transformationL one hasx ∈ E ⇔ y = Lx ∈ S, so the last problem
is equivalent to

min

{
1

2
〈y,D−1AD−1y〉 + 〈D−1q −D−1AD−1c, y〉 : ‖y‖2 ≤ n

}
. (8)
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Clearly,D−1AD−1 is an(n× n) symmetric matrix.
Now we study the general ball constrained quadratic problem in the form

(QBA) min

{
F(x) := 1

2
〈x,Qx〉 + 〈q, x〉 : ‖x‖ ≤ r

}
.

(As beforeQ is a(n× n) symmetric matrix,q ∈ Rn andr > 0.)
First, we give a brief history of this problem which is often called the trust-

region subproblem. It arises as the main subproblems in a class of nonlinear pro-
gramming algorithms called model trust region methods which have been intro-
duced by Levenberg [25], Marquardt [28] and have been successfully developed
in the works of Gay [13], Moré & Sorensen [29, 48], Pham Dinh Tao and his
coworkers [34–37]. To our knowledge the first efficient (primal-dual) algorithm for
solving (QBA) is due to Moré & Sorensen [29]. These authors used safeguarding
technique combined with an adapted Newton method (due to Hebden) for com-
puting a saddle-point of the Lagrangian functionL(x, λ). In the same primal-dual
approach Pham Dinh Tao et al. proposed in 1989 [34, 35] a dichotomy process as an
alternative for the safeguarding technique of Moré–Sorensen. According to many
comparative numerical simulations [34, 35], the dichotomy algorithm seems to be
less expensive than the safeguarding one. A simple bisection method was proposed
by Ye [54] and Vavasis & Zippel [51]. Recently, matrix-free methods [45, 47, 50]
have been introduced to solve large-scale problems. These methods recast the trust-
region problems in terms of a parametrized eigenvalue problem and only require
matrix-vector products.

While minimizing a nonpositive semi-definite quadratic function over a poly-
hedral convex set has been shown to be NP-hard, minimizing the same objective
function on an Euclidean ball can be solved effectively by some polynomial time
algorithms [see 52 and the references therein]. We can explain this ‘luck’ by the
fact that Problem (QBA) is one of few nonconvex programs which possess, as in
convex case, a complete characterization of its solutions.

THEOREM 1 [13, 29, 34, 36].x∗ is a global optimal solution to (QBA) if and
only if there is a real numberλ∗ ≥ 0 such that:

(i) (Q+ λ∗I )x∗ = −q,

(ii) ‖x∗‖ ≤ r, λ∗(‖x∗‖ − r) = 0,

(iii) (Q+ λ∗I ) is positive semi-definite.
Such aλ∗ is unique.

A point x∗ satisfying the first two conditions is called Kuhn–Tucker point for
(QBA), the corresponding nonnegative numberλ∗ is called Lagrangian multiplier
associated withx∗. It is uniquely defined by

λ∗ = −[〈Qx∗, x∗〉 + 〈q, x∗〉]/r2. (9)

Finally (λ∗, x∗) is called Kuhn–Tucker pair for (QBA).
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In this paper,λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues ofQ andφ is a function
defined onR\{λi : i = 1, . . . , n} by φ(λ) = ‖x(λ)‖ wherex(λ) is the solution of
(Q+ λI)x = −q.

The following result of Martinez [27] emphasizes the relationship between local
and global solutions to (QBA).

THEOREM 2.
(i) If x∗ is local-nonglobal minimum for (QBA), then(Q+λ∗I )x∗ = −q with

nonnegativeλ∗ ∈] − λ2,−λ1[ andφ′(λ∗) ≥ 0.

(ii) There exists at most one local-nonglobal minimum for (QBA).

(iii) If ‖x∗‖ = r, (Q + λ∗I )x∗ = −q for some nonnegativeλ∗ ∈] − λ2,−λ1[
andφ′(λ∗) > 0, thenx∗ is a strict local minimum for (QBA).

(iv) If q is orthogonal to some eigenvector associated withλ1, then there is no
local-nonglobal minimum for (QBA).

In d.c. optimization approach we propose here a new algorithm for globally solving
(QBA). Although the DCA is not a polynomial time algorithm, numerical experi-
ments [1, 2, 37] indicated that this method works very well in practice. The DCA is
an iterative method which is quite different from known related algorithms. Thanks
to the particular structure of the problem under consideration, normally the DCA
becomes very simple (it requires only matrix – vector products) and in practice con-
verges to a global solution. For checking the global optimality of solutions provided
by the DCA we use the inexpensiveImplicit Restarted Lanczos Method(IRLM) of
Sorensen [49] to compute the smallest eigenvalue of the related matrixQ and a
corresponding eigenvector. A simple numerical procedure has been introduced (in
case of nonglobal solutions) to find a feasible point having a smaller objective and
to restart the DCA with this point. It has been stated that in nonconvex case (Q is
nonpositive semidefinite) the DCA with at most 2m + 2 restarts (m is the number
of distinct negative eigenvalues ofQ) requires only matrix-vector products too and
converges to a global solution. This fact (see Remark 3) is guaranteed by Theorem
3.

To explain the nature of DCA’s convergence, let us state the following features
of Kuhn–Tucker points for (QBA).

LEMMA 1. If F(x) = 1/2〈x,Qx〉 + 〈q, x〉 with Q being symmetric and(Q +
µI)y = −q, thenF(x) = F(y)−µ/2(‖x‖2−‖y‖2)+ 1/2〈x − y, (Q+µI)(x −
y)〉, ∀x.

Proof.We have

F(x) =F(y)+ 〈x − y,Qy + q〉 + 1

2
〈x − y,Q(x − y)〉

=F(y)− µ〈x − y, y〉 + 1

2
〈x − y, (Q+ µI)(x − y)〉

− µ
2
〈x − y, x − y〉.
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Sinceµ/2〈x − y, x − y〉 = µ/2(‖x‖2 + ‖y‖2)− µ〈x, y〉, we get

−µ
2
〈x − y, x − y〉 − µ〈x − y, y〉 = − µ

2
(‖x‖2 + ‖y‖2)

+ µ‖y‖2 = −µ
2
(‖x‖2 − ‖y‖2),

which proves the lemma. 2

LEMMA 2. Let(µ1, x1) and(µ2, x2) be Kuhn–Tucker pairs for (QBA), thenµ1 =
µ2 if and only ifF(x1) = F(x2).

Proof. If µ1 = µ2 = µ, then according to Lemma 1

F(x2) = F(x1)− µ2 (‖x2‖2 − ‖x1‖2)+ 1

2
〈x2− x1, (Q+ µI)(x2− x1)〉.

But (Q+ µI)(x2− x1) = 0 because(Q+ µI)x1 = −q = (Q+ µI)x2. Hence

F(x2)+ F(x1)− µ
2
(‖x2‖2− ‖x1‖2).

Since eitherµ = 0 or‖x1‖ = ‖x2‖ = r, we haveF(x1) = F(x2).
Conversely suppose thatF(x1) = F(x2). We can assume without loss of gener-

ality thatx1 6= x2 becausex1 = x2 impliesµ1 = µ2 in virtue of (9). Consider first
the case whereµ1 andµ2 are positive. It follows from Lemma 1 that

F(x2) = F(x1)+ 1

2
〈x2 − x1, (Q+ µ1I )(x2− x1)〉

becauseµ1 > 0 andµ2 > 0 imply ‖x1‖ = r = ‖x2‖. Hence

µ1 = −〈x2 − x1,Q(x2 − x1)〉
‖x2− x1‖2 . (10)

Likewise we get

µ2 = −〈x1 − x2,Q(x1 − x2)〉
‖x1− x2‖2 . (11)

Soµ1 = µ2.
It remains to examine the case whereµ1 or µ2 is zero, sayµ1 for instance. As

above we have (10) and hence

〈x2− x1,Q(x2− x1)〉 = 0.

On the other hand we can write

F(x1) = F(x2)− µ2

2
(‖x1‖2− ‖x2‖2)+ 1

2
〈x1 − x2, (Q+ µ2I )(x1− x2)〉.
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That is reduced to

µ2(‖x2‖2− ‖x1‖2)+ µ2‖x2 − x1‖2 = 0.

If µ2 > 0, then‖x2‖ = r and

µ2(r
2− ‖x1‖2)+ µ2‖x2 − x1‖2 > 0.

The proof is then complete. 2

Let us indicate here that the statement in Lemma 2 has been earlier stated in
[26]. ‘F(x1) = F(x2) for Kuhn–Tucker pairs(µ, x1) and(µ, x2)’.

We shall state now the main result of Kuhn–Tucker points for (QBA) which is
useful to appreciate DCA’s convergence:

THEOREM 3. The numberp of distinct multipliers associated with Kuhn–Tucker
points for (QBA) is equal to the number of distinct values of the objective function
F(x) at Kuhn–Tucker points. Moreoverp is at mostmin{2m + 2,2n + 1}, where
m is the number of distinct negative eigenvalues ofQ.

Proof. According to the above displayed results, it suffices to prove thatp ≤
min{2m + 2,2n + 1}. As in [26], the idea follows from a result of Forsythe and
Golub [12]. For the sake of completeness we give below a sketch of the proof.

Let V be an orthogonal matrix composed of eigenvectors associated with the
eigenvaluesλ1 ≤ · · · ≤ λn of Q and1 be the diagonal matrix whose entries are
λ1, . . . , λn such thatV TQV = 1. Let λ be a positive multiplier for (QBA). The
linear equation

(Q+ λI)x = −q (12)

must have at least a solution such that‖x‖ = r. In other words, with the change of
variablesu = V T x andd = V T q, the problem

(1+ λI)u = −d, ‖u‖ = r (13)

must have a solution.
Finally, λ must be a solution of the nonlinear equation

φ(λ) = r, λ ≥ 0, (14)

where

φ(λ) =
[

n∑
i=1

d2
i

(λi + λ)2
]1/2

.

Main properties ofφ(λ) have been investigated in [36]. It tells us, in particular,
thatφ ∈ C∞(R\{−λi : i = 1, . . . , n}) and is strictly convex on each open interval
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contained inR\{−λi : i = 1, . . . , n}. The functionφ(λ) has poles at−λi, (i =
1, . . . , n) and tends to zero asλ tends to±∞. Thus the equationφ(λ) = 0 has at
most 2 roots in each interval] − λi,−λi−1[ and one root in each extreme interval.
If λi > 0 for all i = 1, . . . , n, then there is at most one nonnegative root; ifλi < 0
for all i = 1, . . . , n, then there are at most 2m + 1 nonnegative roots. Hence the
problem (14) has at most min{2m+ 1,2n} nonnegative roots. Taking into account
the possible case of Kuhn–Tucker pairs(λ, x) with λ = 0, we can conclude that
there are at most min{2m+ 2,2n+ 1} multipliers for (QBA). 2

The next result follows from the preceding ones:

COROLLARY 1. Let 0 ≤ µ1 < · · · < µp be the set of Lagrangian multipliers
for (QBA). LetKT (resp.KT (µi)) be the set of Kuhn–Tucker points for (QBA)
(resp. the set of Kuhn–Tucker points associated withµi). We have

(i) KT = ∪pi=1KT (µi).

(ii) KT (µi) is compact and identical with the set of Kuhn–Tucker points at
which the objective functionF(x) takes the same valueαi

KT (µi) = {x ∈ KT : F(x) = αi};

it is reduced to a singleton if−µi 6∈ {λj : j = 1, . . . , n} (the set of
eigenvalues ofQ).

(iii) α = min{F(x) : ‖x‖ ≤ r} = min{F(x) : x ∈ KT } = min{αi : i =
1, . . . , p} = αp
andKT (µp) is exactly the solution set to (QBA).

(iv) The sequence{xk} generated by DCA has all its limit points belonging to
one and onlyKT (µi). If x∗ is a limit point of {xk} then its associated
Lagrangian multiplierλ∗ is given by

λ∗ = −[〈x∗,Qx∗〉 + 〈q, x∗〉]/r2

and we haveλ∗ = µi.
(v) The whole sequence{λk = −[〈xk,Qxk〉 + 〈q, xk〉]/r2} converges toλ∗.

For solving (QBA) we use the following d.c. decomposition which has been shown
to be an efficient one from the computational viewpoint:

g(x) = 1

2
ρ‖x‖2 + qT x + χC(x); h(x) = 1

2
xT (ρI −Q)x, (15)

whereχC stands for the indicator function of the ballC := {x ∈ Rn : ‖x‖ ≤ r}
andρ is a positive number such that the matrix(ρI −Q) is positive semidefinite.
With this decomposition Problem (QBA) takes the form

(QBAdc) min{g(x)− h(x) : x ∈ Rn}.
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Since∇h(x) = (ρI−Q)x for anyx in Rn , the DCA applied to (QBAdc) is reduced
to construction of two sequences{xk} and{yk}(k ≥ 0) satisfying

yk = (ρI −Q)xk, (16)

xk+1 ∈ arg min
{ρ

2
‖x‖2 + xT (q − yk)+ χC(x) : x ∈ Rn

}
, (17)

wherex0 ∈ C is given in advance.
Clearly,xk+1 is a solution of the following problem

min
x∈C

∥∥∥∥x − yk − qρ

∥∥∥∥2

.

Hence,xk+1 is just the projection of(yk − q)/ρ onC, i.e.,

xk+1 = PC
(
xk − 1

ρ
(Qxk + q)

)
. (18)

ALGORITHM DCQBA (DCA for computing a Kuhn–Tucker point of Problem
(QBA)). Let ε > 0 be small enough,ρ be a positive number such that the matrix
(ρI −Q) is positive semi-definite andx0 ∈ C be given. Setk← 0, er ← 1.
While er > ε do

If ‖(ρI −Q)xk − q‖ ≤ ρr, then takexk+1 = [(ρI −Q)xk − q]/ρ
elsetakexk+1 = r[(ρI −Q)xk − q]/‖(ρI −Q)xk − q‖
endif

λk+1 = −〈x
k+1,Qxk+1〉 − 〈xk+1, q〉

r2

er = max{‖(Q+ λk+1I )xk+1 − q‖, λk+1(r − ‖xk+1‖)}
k← k + 1

endwhile

REMARK 1.
• In the caseq = 0, exceptionally ifQ is positive semi-definite (for which zero

is a solution), we choosex0 such thaty0 = (ρI −Q)x0 6= 0, sincey0 = 0
impliesxk = 0,∀k ≥ 1

• In practice, the convergence rate very much depends on the valueρ. Nu-
merical experiments indicated that in general the closer toλn the positive
parameterρ is, the better the DCA converges. Such “good” parametersρ

belong to{λ > 0 : λ ∈ [ρ∗, ρ∗ + ε]} whereε > 0 is sufficiently small and
ρ∗ defined byρ∗ = 0 if λn < 0, λn otherwise. Such aρ can be computed by
using the quite inexpensiveImplicit Restarted Lanczos Method[49].
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THEOREM 4.
(i) F(xk+1) ≤ F(xk)− 1

2(ρ + λ̄)‖xk+1− xk‖2, whereλ̄ is the smallest eigen-
value of(ρI −Q).

(ii) F(xk)↘ α′ ≥ α and limk→∞ ‖xk+1 − xk‖ = 0.

(iii) Either there isp ≥ 0 such thatxp is a Kuhn– Tucker point for (QBA), or
every limit pointx∗ of the sequence{xk} is a Kuhn–Tucker point for (QBA).

Proof.Theorem 4 is an immediate consequence of the DCA’s convergence theo-
rem for the general d.c. programming [see 1, 33, 37]. However, we wish to present
a direct proof of Theorem 4 that is better suited to this setting.

We have forx ∈ C

F(x) = F(xk)+ 〈Qxk + q, x − xk〉 + 1

2
〈x − xk,Q(x − xk)〉.

So

F(xk+1) = F(xk)+ 〈Qxk + q, xk+1 − xk〉 + 1

2
〈xk+1 − xk,Q(xk+1 − xk)〉.

(19)

By definition (18) ofxk+1 we get〈
xk − 1

ρ
(Qxk + q)− xk+1, xk − xk+1

〉
≤ 0, i.e.,

〈Qxk + q, xk+1 − xk〉 ≤ −ρ‖xk+1 − xk‖2. (20)

Combining (19) and (20) gives

F(xk+1) ≤ F(xk)− ρ
2
‖xk+1 − xk‖2+ 1

2
〈xk+1 − xk,Q(xk+1 − xk)〉.

Finally we obtain

F(xk+1) ≤ F(xk)− ρ‖xk+1 − xk‖ − 1

2
〈xk+1 − xk, (ρI −Q)(xk+1 − xk)〉.

(21)

Now let λ̄ be the smallest eigenvalue of the positive semi- definite matrixρI −Q.
Then we have

F(xk+1) ≤ F(xk)− ρ + λ̄
2
‖xk+1 − xk‖2.

The sequence{F(xk)} being decreasing and bounded below then converges toα′ ≥
α. Hence{‖xk+1 − xk‖} converges to zero sinceρ > 0 andλ̄ ≥ 0. It remains to
prove property (iii).
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Let x∗ be a limit point of{xk} (it exists since the sequence{xk} is contained in
C). Since limk→+∞ ‖xk+1 − xk‖ = 0 we get

x∗ = PC
(
x∗ − 1

ρ
(Qx∗ + q)

)
. (22)

It is clear that (22) is the geometrical translation of the Kuhn–Tucker conditions:
there isλ∗ ≥ 0 such that(Q+ λ∗I )x∗ = −q, ‖x∗‖ ≤ r andλ∗(‖x∗‖ − r) = 0. 2

REMARK 2. It is clear that Theorem 2 strengthens the possibility for DCQBA
to reach a global minimizer to (QBA). In our numerical experiments DCQBA
converges always to a global solution.

Using DCQBA for globally solving (QBA)

From property (iii) of Theorem 1 we see that checking the globality of a solutionx∗
provided by DCQBA amounts to check the positive semi- definiteness of the matrix
Q+ λ∗I . For this purpose, we use also IRLM for computingλ1, its corresponding
eigenvectoru and then compare−λ1 with

λ∗ = −〈x
∗,Qx∗〉 − 〈x∗, q〉

r2
(23)

(following Theorem 1). In case ifλ∗ < −λ1 (it means thatQ+ λ∗I is nonpositive
semi-definite, i.e.,uT (Q + λ∗I )u = (λ∗ + λ1)u

T u < 0) we can restart DCQBA
from a new pointx̄ for which F(x̄) < F(x∗). Such a point can be computed as
follows.
a) If 〈q, x∗〉 > 0, then takingx̄ = −x∗ we haveF(x̄) < F(x∗). Indeed, in virtue
of Lemma 1,

F(x) = F(x∗)− λ
∗

2
(‖x‖2 − ‖x∗‖2)+ 1

2
〈x − x∗, (Q+ λ∗I )(x − x∗)〉. (24)

This implies

F(x̄) = F(x∗)+ 2〈(Q+ λ∗I )x∗, x∗〉 = F(x∗)− 2〈q, x∗〉 < F(x∗).
So we can restart DCQBA from the initial pointx̄
b) If 〈q, x∗〉 ≤ 0, then we distinguish two cases:

(b.1) If either‖x∗‖ < r or ‖x∗‖ = r anduT x∗ 6= 0, then we takēx = x∗ + γ u,
whereγ 6= 0 is chosen such that‖x̄‖ = r. More precisely,γ is a nontrivial
solution of the equation

‖u‖2γ 2+ 2uT x∗γ + ‖x∗‖2− r2 = 0
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which is given explicitly by

γ =
{
−2(uT x∗)/‖u‖2 if ‖x∗‖ = r
(−(uT x∗)±√1)/‖u‖2 if ‖x∗‖ < r, (25)

where1 = (uT x∗)2− ‖u‖2(‖x∗‖2− r2).

So we can choosēx as the initial point for restarting DCQBA, since

F(x̄) = F(x∗)+ γ
2

2
〈u, (Q+ λ∗I )u〉 < F(x∗).

Note that in (25) the greaterγ 2 is, the smallerF(x̄) becomes. Therefore,
a better value ofγ is given byγ = (−(uT x∗)+√1)/‖u‖2 if uT x∗ < 0,
(−(uT x∗)−√1)/‖u‖2 otherwise.

(b.2) If ‖x∗‖ = r, anduT x∗ = 0 (the latter impliesqT u = 0 since

〈q, u〉 = −〈u, (Q+ λ∗I 〉 = −〈x∗, (Q+ λ∗I )u〉 = −(λ∗ + λ1)u
T x∗),

then we find a new vectorv = u + τx∗ with τ 6= 0 such thatvT (Q +
λ∗I )v < 0 andvT x∗ 6= 0. Return to (b.1) usingv instead ofu.

To prove the existence of such a vectorv we will proceed as follows. We have
vT x∗ = uT x∗ + τ‖x∗‖2 = τr2. SovT x∗ 6= 0 if and only if τ 6= 0. Since

〈v, (Q+ λ∗I )v〉 = τ2〈x∗, (Q+ λ∗I )x∗〉 + 2τ 〈u, (Q + λ∗I )x∗〉
+ 〈u, (Q+ λ∗I )u〉
= −〈q, x∗〉τ2− 2〈q, u〉τ + 〈u, (Q+ λ∗I )u〉
= −〈q, x∗〉τ2+ 〈u, (Q + λ∗I )u〉,

we deduce after several suitable computations the following properties:
• If qT x∗ = 0, thenvT (Q + λ∗I )v < 0 so allτ 6= 0 is possible and optimal

choices ofτ (which correspond to the best decrease of the objective function
F(x) while passing fromx∗ to x̄) are given byτ ∈ {τ ′ = −‖u‖/r, τ ′′ =
‖u‖/r}. Moreover we have

x̄(τ ′) = − r

‖u‖u, x̄(τ ′′) = r

‖u‖u

and

F(x̄(τ ′) = F(x̄(τ ′′) = F(x∗)+ r2

2‖u‖2 〈u, (Q+ λ
∗I )u〉.

• If qT x∗ < 0, thenvT (Q + λ∗I )v < 0 if and only if τ ∈ {]τ1,0[∪]0, τ2[},
whereτ1 andτ2 given by

τ1 = −[−u
T (Q+ λ∗I )u]1/2
(−qT x∗)1/2 , τ2 = −τ1.
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Optimal choices ofτ , in this case, are

τ ∈
{
τ ′ = −‖u‖[−uT (Q+ λ∗I )u]1/2

[−uT (Q+ λ∗I )ur2 − 2qT x∗‖u‖2]1/2 , τ ′′ = −τ ′
}
.

Remark thatτ1 < τ ′ < 0 < τ ′′ < τ2 and actually the caseqT x∗ = 0 can be
incorporated into the caseqT x∗ < 0 by takingτ1 = −∞ andτ2 = +∞ when
qT x∗ = 0.

Summing up we conclude that if a Kuhn–Tucker pointx∗ produced by DCQBA
is not a global solution to (QBA) then another pointx̄ (such that‖x̄‖ ≤ r and
F(x̄) < F(x∗)) is already available for restarting DCQBA.

Finite convergence of DCA with restarting to an approximate global solution of
(QBA). According to Corollary 1, the sequence{xk} generated by DCA converges
infinitely to a Kuhn–Tucker point for (QBA) and the set of limit points of{xk} is
contained exactly in oneKT (µi). Let x∗ be a limit point of{xk} then the whole
sequence{λk = −[〈xk,Qxk〉 + 〈q, xk〉]/r2} converges toλ∗ = −[〈x∗,Qx∗〉 +
〈q, x∗〉]/r2 andλ∗ = µi .

(i) If x∗ ∈ KT (µi) with i = p then λ∗ = µp and x∗ is a global solu-
tion to (QBA). In this case, DCA provides after finitely many iterations an
approximate global solutionxk to (QBA).

(ii) If x∗ is a non global solution to (QBA), (i.e.,x∗ ∈ KT (µi) with i 6= p)

then the aforementioned procedure provides a feasible pointx̄(x∗) such that
F(x̄(x∗)) < F(x∗) = F(x) < F(xp) for all p and allx ∈KT (µi).

The crucial problem then is to leave the setKT (µi). According to the restarting
procedure, DCA provides after finitely many iterations an approximationxk of x∗
such thatx̄(xk) is near tox̄(x∗) and soF(x̄(xk)) < F(x∗). Restart now DCA
from ξ0 = x̄(xk), it follows from the strict decrease of{F(ξk)} (Theorem 4) that
KT (µi) contains noξk neither does the sequence{xk}.

F(ξ l) < · · · < F(ξ0) < F(x∗) = F(x) < F(xp)
for all l andp and for allx ∈KT (µi).

In practice such an approximate Kuhn–Tucker pointxk can be computed by
DCA as the firstxp satisfying

‖(Q+ λpI)xp − q‖ ≤ ε, λp ≥ 0, λp(r − ‖xp‖) ≤ ε
with ε > 0 is small enough.

We now describe our global algorithm based on DCQBA for solving (QBA):

ALGORITHM 1 (globally solving (QBA)):
Initialization . Computeλ1 andu by IRLM.

Compute an approximatioñλn to λn by IRLM.
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Letρ := λ̃n + 0.1, x̄ ∈ C, stop:= false.

While stop = falsedo

1. Apply DCQBA from the starting pointx0 := x̄ to obtainx∗.

2. Letλ∗ = (−〈x∗,Qx∗〉 − 〈x∗, q〉)/r2.

If λ∗ ≥ −λ1, then stop:= true,x∗ is a global solution of (QBA)

elsecomputex̄ such thatF(x̄ < F(x∗) and return to 1.

end while

REMARK 3. According to Theorem 3, for nonconvex program (QBA) Algorithm
1 requires only matrix-vector products and converges to a global solution after
at most 2m + 2 restarting procedures. In general we rarely have recourse to this
procedure.

2.2. UPPERBOUND – DCA TO BOX CONSTRAINED QUADRATIC PROBLEM

For finding a good feasible point we use again the DCA to Problem (QB), since the
DCA applied to this problem (with a suitable d.c. decomposition) is very simple
and usually leads to a point which is a good approximation to a global solution.

Using a similar decomposition to (15) forF we obtain Algorithm 2a which will
be indicated below. This seems to be the most efficient decomposition since the
projection of a point over a rectangle is easily computed. More precisely, taking

g1(x) = 1

2
ρ‖x‖2 + bT x + χK0(x); h1(x) = 1

2
xT (ρI −A)x (26)

(ρ is a positive number such that the matrix(ρI −A) is positive semi-definite) we
can write (QB) in the form of d.c. program

(QB)⇔ min{g1(x)− h1(x) : x ∈ Rb }. (QBdc)

Then, as in Algorithm DCQBA, the DCA applied to (QBdc) consists in the con-
struction of two sequences{xk} and{yk} as follows

yk = (ρI −A)xk; xk+1 = PK0((yk − b)ρ). (27)

ALGORITHM 2a (DCA for computing a Kuhn–Tucker point of Problem (QB)).
Let ε > 0 be small enough,ρ be a positive number such that the matrix(ρI −A)
is positive semidefinite andx0 ∈ K0 be given. Setk← 0, er := 1.
While er > ε do

yk ← (ρI −A)xk
For i = 1, . . . , n do
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If li ≤ (yki − bi)/ρ ≤ ui, then takexk+1
i := (yki − bi)/ρ

else

if (yki − bi)/ρ < li , then takexk+1
i := li

elsetakexk+1
i := ui

endif

endif

endfor

er ← ‖xk+1 − xk‖
k← k + 1

endwhile
Consider now a special case of (QB) whereA is negative semi-definite matrix,

i.e, one is faced with a concave minimization problem. We propose another d.c.
decomposition defined by

g1(x) = χK0(x); h1(x) = 1

2
〈x,−Ax〉 − 〈b, x〉. (28)

The DCA applied to (QBdc) is written as follows:

yk = −Axk − b; xk+1 ∈ argumin{〈x,−yk〉 : x ∈ K0}. (29)

Since min{〈x,−yk〉 : x ∈ K0} =∑n
i=1 min{−xiyki : li ≤ xi ≤ ui} we get

ALGORITHM 2b (for convex maximization program).Letε > 0 be small enough
andx0 ∈ K0 be given. Setk← 0, er ← 1.
While er > ε do

yk ←−Axk − b
For i = 1, . . . , n do

If yki ≤ 0, then takexk+1
i := li

elsetakexk+1
i := ui

endif

endfor

er ← ‖xk+1 − xk‖
k← k + 1

endwhile

REMARK 4.
• Algorithms 2a and 2b require only matrix-vector products, thus they may be

applied to large-scale problems.
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• A d.c. program (Pdc) is calledd.c. polyhedralif either g or h is polyhedral.
This class of d.c. optimization problems, which is frequently encountered
in practice and has been extensively developed in our previous works (see
e.g. [1] and references therein), enjoys interesting properties (from both the-
oretical and practical viewpoints) concerning the local optimality and the
convergence of the DCA. Clearly, with the decomposition (28) (QBdc) is a
polyhedral d.c. program sinceg1 = χK0 is a polyhedral function. In this case
the DCA converges after a finite number of iterations (Theorem 9 of [1]).
Moreover, from Proposition 1 in [1] it follows that if Algorithm 2b provides
a solutionx∗ such that−Ax∗ − b ∈ int ∂K0(x∗) (this condition is in many
cases satisfied), thenx∗ is a local solution of (QB).

• In our experimentations both Algorithm 2a and 2b converge very rapidly
(whenn ≤ 500 the maximal number of iterations is 3) to a local minimizer
of (QB). Moreover they provide a global solution if the initial pointx0 is near
enough to a global one.

How to choose a good initial point for Algorithms 2a and 2b?It is well-known that
Problem (QB) may have many local minimizers. Thus, to obtain a good approxima-
tion to its global solution we start Algorithm 2a (or Algorithm 2b) at each iteration
k from a suitable initial pointxk0. The pointxk0 is chosen as follows: at iterationk
one considers the ellipsoidEk corresponding to the smallest lower bound.Ek is a
candidate to ellipsoids containing a global solution. So starting Algorithm 2a (or
Algorithm 2b) from a point inEk ∩K0 can detect a global one. A good point can
be taken by the projection of̄xk onK0 which is a solution obtained by applying
Algorithm 1 to the problem

(QEk) β(Kk) := min

{
1

2
〈, x,Ax〉 + 〈b, x〉 : x ∈ Ek

}
.

More precisely we have the following procedure:
Procedure IP Let x̄k be an optimal solution of (QEk).

For i = 1, . . . , n do

If li ≤ x̄ki ≤ ui then takexk0i := x̄ki
else

If x̄ki < li then takexk0i := li
elsetakexk0i := ui
endif

endif

endfor
Numerical tests indicated that (Section 5) by this way one can quickly reach

a good feasible point and thereby a lot of numbers of generated ellipsoids can be
eliminated from further consideration.
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2.3. BRANCHING PROCEDURE

For rectangular subdivision, the bisection process via a longest edge as thoroughly
discussed in Horst & Tuy [19], is often used. For example, in [20] and [38] the
following rule was proposed:

Rule1: LetKk = {x : aki ≤ xi ≤ tki } be a rectangle corresponding to smallest
lower bound which will be divided. Letjk be the index of the longest edge ofKk ,
i.e., such that

tkjk − akjk = max{tki − aki , i = 1, . . . , n}.
Let ᾱ = 1/2(tjk + ajk ). ThenKk is bisected into two subrectangles:

Kk1 = {x ∈ Kk : xjk ≤ ᾱ}, Kk2 = {x ∈ Kk : xjk ≥ ᾱ}. (30)

This process seems to be not well adapted to the ellipsoidal technique used in our
branch and bound algorithm. We propose an alternative bisection which uses the
solution of a current ellipsoidal constrained problem (QEk). This is based on the
fact that if x̄k ∈ Kk then one has an exact evaluation overKk and therefore the
rectangleKk will not be divided further. The following rule forces̄xk to enter in
Kk .

Rule2: For each selectedKk we consider the solution̄xk of Problem (QEk). Let jk
be the index satisfying

max(x̄kjk − tkjk , akjk − x̄kjk ) = max
i=1,... ,n

max(x̄ki − tki , aki − x̄ki ). (31)

andᾱ = 1/2(tjk + ajk ). ThenKk is bisected into two subrectangles as in (30).
This procedure works very well in our numerical experiments. Nevertheless

using the Rule 2 one may meet an undesired fact: the length ofj thk -edge is near
to zero, i.e., the volume of the ellipsoidEk containingKk shrinks to zero but
Ek may not shrink to a singleton. In this case the convergence of the branch and
bound algorithm is not ensured. In order to prove the convergence of our algorithm
we combine Rule 2 with Rule 1. More precisely, we consider first the indexjk
satisfying (31). If

tkjk − akjk > δ(δ being a given small positive number), (32)

then Rule 2 is used, otherwise we apply Rule 1.
By this way, our algorithm generates two whole sequences{Ek} and {Kk}

which shrink to a singleton ask shrinks to+∞. We observe that in our numerical
experiments Rule 2 is always used, i.e., (32) is always satisfied.
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2.4. THE DESCRIPTION OF THE BRANCH AND BOUND ALGORITHM AND ITS

CONVERGENCE

Using notions and procedures presented above we can now establish a branch and
bound algorithm for Problem (QB) as follows.

ALGORITHM BDCE
Initialization
Solve the following problem

(QE0) β(K0) := min

{
1

2
〈x,Ax〉 + 〈b, x〉 : x ∈ E0

}
to obtain an optimal solution̄x0 and lower boundβ0 := β(K0).
If x̄0 ∈ K0 thenstop← true, x̄0 is a global solution of (QB)
else

Solve the following problem by Algorithm 2a (or Algorithm 2b)

(QB) min

{
f (x) := 1

2
〈x,Ax〉 + 〈b, x〉 : li ≤ xi ≤ ui,

i = 1, . . . , n

}
from the starting point supplied by Procedure IP to obtain the best pointx0

and upper boundγ 0, i.e.,f (x0) = γ 0.

If γ 0 = β(K0), thenstop← true, x0 is a global solution of (QB)

elsestop← false

endif

endif

SetR← {K0}, k← 0.

While stop = falsedo

Select a rectangleKk ∈ R such thatβk := β(Kk) = min{β(K) : K ∈ R}.
Update upper boundγ k by applying Algorithm 2a (or Algorithm 2b) to
(QB) from a starting point chosen as in Procedure IP.

Let xk be the known feasible point such thatγ k = f (xk).
BisectKk intoKk1 andKk2.

Computeβ(Kki ) by solving Problems(QEki ), (i = 1,2)

(QEki ) β(Kki ) := min

{
1

2
〈x,Ax〉 + 〈b, x〉 : x ∈ Eki

}
.
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Let x̄ki be an optimal solution of(QEki ).

If x̄ki ∈ Kki andf (x̄ki ) < γ
k then

γ k := f (x̄ki ); xk := x̄ki
endif

If β(Kki ) < β(Kk) then setβ(Kki )← β(Kk).

SetR← R ∪ {Kk
i : β(Kk

i ) < γ
k, i = 1,2}\{Kk}.

If R = ∅ thenstop← true, xk is an optimal solution.

elseSetk← k + 1.

endif

endwhile

THEOREM 5 (convergence of algorithm BDCD).
(i) If the algorithm terminates at iterationk, thenxk is a global optimal solution

to problem(QB).

(ii) If the algorithm is infinite, then it generates a bounded sequence{xk}, every
accumulation point of which is a global optimal solution of (QB), and

γ k ↘ f∗, βk ↗ f∗

(f∗ denotes the optimal value off onK0).
Proof. If the algorithm terminates at iterationk thenβk := β(Kk) = γ k :=

f (xk). Thus the part (i) follows from the definition ofβk , γ k, xk .
Assume now the algorithm is infinite, then it must generate an infinite sequence

{Ek} of ellipsoids whose volumes decrease to zero. By the branching procedure,
the whole sequence{Ek} and{Kk} shrink to a singleton. On the other hand, from
the construction one sees that the sequenceγ k is nonincreasing, while the sequence
βk is nondecreasing and therefore{γ k−βk} is a nonincreasing sequence of positive
numbers. Hence, the whole sequenceγ k − βk must tend to zero. This andβk ≤
f∗ ≤ γ k for everyk imply

γ k ↘ f∗, βk ↗ f∗.

Sincexk ∈ K0 andγ k = f (xk), any cluster point of the sequence{xk} belongs to
K0 and has the function valuef∗, i.e., solves problem (QB). The theorem is proved.

2

REMARK 5.
• In practice the following optimality criterion is used:βk ≥ γ k − ε|γ k| with

0 < ε < 1. So the step “SetR← R ∪ {Kk
i : β(Kk

i ) < γ k, i = 1,2}\{Kk}”
in Algorithm BDCE is actually replaced by “SetR ← R ∪ {Kk

i : β(Kk
i ) <

γ k − ε|γ k|, i = 1,2}\{Kk}”. Hence, when the algorithm stops, we obtain an
ε-optimal solution of (QB).
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• In the stepInitialization, the case wherēx0 6∈ K0 andγ 0 = β0 may occur
if the optimal solution of(QE0) is not unique. This corresponds to thehard
caseof Problem (QE0) whereq is perpendicular to Ker(Q− λ1I ) (see [29],
[34]).

3. Implementation and illustrative example

We give below some details of an implementation of Algorithm BDCE.
The most expensive operation in Algorithm BDCE is solving subproblem (QE)

at each iteration. Since (QE) is equivalent to (8), we define the objective function of
Problem (8) and then use Algorithm 1 to solve the last. So at each iteration we have
to solve two problems of the form (8) by Algorithm 1. Observe that the objective
functions of these two problems differ from each other only on the linear term.
Indeed, in passing from the rectangularKk which to be bisected at iterationk to
subrectanglesKki := ∏n

j=1[akij , tkij ](i = 1,2) only the coordinatestkijk andakijk are
modified. Then using (5) and (6), after a simple calculation, we get

d
k1
jk
= dk2

jk
= 4/(tkjk − akjk ) = −2dkjk /c

k
jk
, (33)

c
k1
jk
= (3akjk + tkjk )/(akjk + tkjk ) = (1+ 2ckjk )/c

k
jk
, (34)

c
k2
jk
= (akjk + 3tkjk )/(a

k
jk
− tkjk ) = −1+ 2ckjk . (35)

(As beforedki andcki (i = 1,2) denote the vectors containing diagonal elements of
the matrixDki which define the ellipsoidsEki and the centres ofEki respectively).
It means that the ellipsoidsEk1 andEk2 are defined by the same matrix while their
centres are different. This allows us to reduce the number of operations as well as
the memory storage during the performing of the algorithm.

The most important in the computational implementation of a branch and bound
algorithm is the construction of a convenient computer scheme for storing and
updating the informaiton about partition elements. For eachE corresponding to
K ∈ R we need save the following information: vectorsd and c, the optimal
solutionx̄ of (QE) (for finding a starting point of Algorithm 2a or 2b and choosing
the index of branching procedure) and the lower boundβ(K). Since a vectord may
define two different ellipsoids, for storing these informations we use two linked
lists: POINT and ELLIP. The first list contains the coordinates of vector defining
an ellipsoidE ∈ R, the second one contains the information about the ellipsoidE:
centrec, x̄, β(K) and the index of the vectord used to link these lists. In passing
from iterationk to iterationk + 1 at most one new element may be added to the
list POINT while an element selected in the list ELLIP will be replaced by at most
two new elements. An element in the list POINT will be deleted if all of its linked
elements in the list ELLIP have been deleted.
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However we do not need store any information about the rectangleK corre-
sponding toE. As soon as an ellipsoidEk is selected for branching, using (5) and
(6) we can recover the edges of the rectangleKk to be divided.

Let us provide now an illustrative example.

EXAMPLE: Consider the following problem

min{F(x) := 〈x,Ax〉 : x ∈ K0 := [−1,1]4}, (36)


−22 −1 7 −6
−1 −33 −4 7

7 −4 −27 1
−6 7 1 −38


We find anε-optimal solution of (36) withε = 0.02.
Step Initialization:Solving problem(QE0) whereE0 = {x ∈ R4 : ‖x‖ ≤ 2}, we
obtain

β(K0) = −180 andx̄0 = (0.5165,−1.0325,−0.5163,1.5494)T .

Applying Algorithm 2b to (36) from the pointx0
0 = (0.5165,−1,−0.5163,1)T ,

we get the current best feasible pointx0 = (1,−1,−1,1)T and upper boundγ 0 =
F(x0) = −168.
ThenStop:= false.
Iteration 1(k = 0) : K0 is divided into two rectangles by Rule 2

K01 = {x ∈ K0 : x4 ≤ 0}; K02 = {x ∈ K0 : x4 ≥ 0}.
Solving(QE01) and(QE02) we obtain

β(K01) = −177,4677; x̄01 = (−0.5929,1.5471,0.9532,−0.7942)T ;
β(K02) = −137,3199; x̄02 = (−0.3221,1.5467,1.2219,0.5524)T .

SetR := {E01}.
Iteration 2(k = 1): K01 is divided into two rectangles

K11 = {x ∈ K01 : x2 ≤ 0}; K12 = {x ∈ K01 : x2 ≥ 0}.
Applying Algorithm 2b from the point(−0.5929,1,0.9532,−0.7942)T , we get
x1 = (−1,1,1,−1)T , F(x1) = −168 which is also the current best feasible point.
γ 1 = −168. Solving(QE11) and(QE12), we obtain

β(K11) = −153.3060; x̄11 = (−1.3564,−0.5717,1.3653− 0.7624)T ;
β(K12) = −179.6700; x̄12 = (−1.1067,0.7522,1.4550− 0.8178)T .
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Setβ(K12) := β(K01) = −177.4677 andR := {E12}.
Iteration 3(k = 2): K12 is divided into two rectangles

K21 = {x ∈ K12 : x3 ≤ 0}; K22 = {x ∈ K12 : x3 ≥ 0}.
Applying Algorithm 2b from the point(−1,0.7522,1,−0.8178)T we getx2 = x1

thenγ 2 = −168. Solving(QE21) and(QE22) we obtain

β(K21) = −135.2690; x̄21 = (1.6955,0.8368,−0.8227− 0.7525)T ;
β(K22) = −177.3723; x̄22 = (−1.5534,0.8019,0.8227− 0.9489)T .

SetR := {E22}.
Iteration 4(k = 3): K22 is divided into two rectangles

K31 = {x ∈ K22 : x1 ≤ 0}; K32 = {x ∈ K22 : x1 ≥ 0}.
Applying algorithm 2b from the point(−1,0.8019,0.8227,−0.9489)T we get
x3 = x1 and thenγ 3 = −168. Solving(QE31) and(QE32) we obtain

β(K31) = −171.0561; x̄21 = (−0.8612,1.0110,0.9145,−1.1608)T ;
β(K32) = −138.0100; x̄32 = (0.4883,1.1687,0.8278,−1.1673)T .

HenceR := ∅ and thereforestop := true. Then bothx0 and x1 are ε-optimal
solutions of (36).

Note that if we chooseε = 0.01 the algorithm gives the same optimal solutions
x0 andx1 after 9 iterations.

4. A variant of BDCE (BDCEU)

A branch and bound approach using a convex underestimation (BBU) has been
successfully applied to indefinite quadratic programming in which the objective
function is the difference of a nonseparable convex part and a separable convex
part [1, 41]. For Problem (QB) we can introduce the following d.c. decomposition
of the objective function

f (x) := g(x)− h(x) = 1

2
〈(A+ ρI)x, x〉 + 〈b, x〉 − ρ

2
‖x‖2, (37)

whereρ is a positive number such that the matrixρI +A be positive semidefinite.
The convex functionh(x) = (ρ/2)

∑n
i=1 x

2
i is clearly separable in its variables:

h(x) = ∑n
i=1 hi(xi) with hi(xi) = (ρ/2)x2

i . The convex underestimation off (x)
on the subdivided rectangleK = ∏n

i=1 [ai, ti] is then ([1], [41])g(x) − φKk(x).
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HereφK(x) = ∑n
i=1 φKi (xi) is defined by: fori = 1, . . . , n, φKi (xi) is the affine

function that agrees withhi at the endpoints of the segment[ai, ti]. In other words

φKi (xi) =
ρ

2
(ai + ti )xi − ρ

2
aiti .

BBU [1, 41] differs from BDCE in three points:
• The use of the convex underestimationg(x)− φ(x) for computing the lower

bound off (x) over the subdivided rectangleK. We are faced with a box
constrained convex quadratic minimization problem which can be globally
solved by the DCA.

• The use ofw-subdivision in the branching procedure: for the selected subrec-
tangleKk we haveφKk(x

k)− h(xk) > 0. Choose an indexik satisfying

ik ∈ argmaxi{φKki (xki )− hi(xki )}
and subdivideKk into two subrectangles

Kk1 = {x ∈ Kk : xik ≤ xkik }; Kk2 = {x ∈ Kk : xik ≥ xkik }.

• The starting point of the DCA in the solution of Problem (QB).
A comparison between the two algorithms through a lot of numerical examples
will be presented in Section 5.

In Algorithm BDCE it may happen thatβ(Kki ) ≤ β(Kk) for i = 1,2.
To speed up the convergence of BDCE, it seems to be interesting for such a case

to perform an additional computation of lower bound by the bounding procedure
of BBU: after solving Problems(QEki )(i = 1,2) if β(Kki ) ≤ β(Kk), we solve
the problem

β̃(Kki ) :=min

{
1

2
〈(A+ ρI)x, x〉 + 〈b, x〉

−
n∑
i=1

[ρ
2
(aki + tki )xi −

ρ

2
aki t

k
i

]
: aki ≤ xi ≤ tki

}
and then setβ(Kki ) := min{β(Kki )}. The modified algorithm will be denoted by
BDCEU.

5. Computational results and conclusions

The algorithms were coded in Pascal under a Unix system. In this section we
present some computational tests on the performance of our algorithm for differ-
ent classes of test problems. All test problems are run in double precision on a
SUN/SPARC-20 station.

In Algorithms 1 and 2a, 2b when‖xk‖ > 1 the stopping criterioner := ‖xk+1−
xk‖ ≤ ε was replaced byer : +‖xk+1 − xk‖2/‖xk‖2 ≤ ε. We tookε = 10−8. For
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all test problems the initial point of Algorithm 1 wasx = e (it is a point in the
boundary ofE0).

5.1. SPIN-GLASS {-1,1} INDEFINITE QUADRATIC MINIMIZATION PROBLEM

In statistical physics, to study magnetic order of the magnetic material, one is led
to minimize the global energy of a complex physical system composed of magnetic
moments in interaction, called spin glass. The discrete mathematical model of this
problem is given by [5], [24]

min

{
N∑
i=1

aij xixj : xi ∈ {−1,1}
}

(38)

wherex = (x1, . . . , xN) is a spin state vector,A = (aij ) is an interaction matrix.
It is anN ×N integral symmetric matrix which is almost block tridiagonal of the
form (N = n2).

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1 ±1

Here is an example withn = 4, all nonzeroaij are 1 or−1.
Furthermore, to study a change of phase of the magnetic material, physicists

need to draw the curve of minimal energies in function of the densityd− of negative
interactions(aij = −1) with respect to the total of interactions(aij = 1 or−1):

d− = |{(i, j) : aij = −1}|
|{(i, j) : aij = 1 or − 1}| =

|{(i, j) : aij = −1}|
4n2

where|{(i, j) : aij = −1}| denotes the cardinal of the set{(i, j) : aij = −1}.
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For solving problem (38) we first write it in the form

min{〈x, (A− 4I )x〉 + 4 : x ∈ {−1,1}n}.
Then solving the concave minimization program

min{〈x, (A− 4I )x〉 + 4 : x ∈ [−1,1]n} (39)

we obtain an optimal solution of (39) in{−1,1}n following Algorithm 2b.
Tables 1 and 2 indicate the performance of three algorithms BDCE, BBU and

BDCEU for two classes of spin-glass problems in which the sign ofaij 6= 0 was
chosen as follows:

Data for Table 1:
For j = 0, . . . , n− 1

S1for i = 1+ jn, . . . ,1+ jn+ n− 2:
if i > N/4 thenai.i+1 := 1 elseai,i+1 := −1; ai+1,i := ai,i+1

S2a1+jn,1+jn+n−1 = a1+jn+n−1,1+jn := 1;
For i := 1, . . . , (n− 1)n :

S3 if i > N/4 thenai,n+i := 1 elseai,n+i := −1; an+i,i = ai,n+i := 1.
For i := 1, . . . , n:

S4if odd(i) thenai,(n−1)n+i := 1 elseai,(n−1)n+i := −1; an−1)n+i,i := ai,(n−1)n+i .
The data for Table 2 was generated by replacing in S1, S3, S4N/4 withN/3 and
1 with−1,−1 with 1.

We find anε-solution of these problems withε = 0.05. The abbreviations in
these Tables were the following: num – number of elementaij = −1 in the data;
iter – number of iterations; CPU – CPU time in seconds; NLB2 – number of how
many times the bounding procedure of BBU has been used in BDCEU; NALB2 –
number of how many times if the lower bounds obtained by this bounding proce-
dure is better than lower bounds in BDCE (i.e.β̃(Kki ) < β(Kki ) the optimal value
of (QEKi )).

In the second class of problems, since BDCE converges after one iteration (ex-
cept the case whereN = 36), it is not interesting to present the performance of
BDCEU in Table 2.

Computational results reported in these tables show that:
• BDCE is very efficient for Spin-glass problems, especially for the second

class (except whenN = 36).

• The use of second process of lower bounding (BDCEU) is interesting only
for N ≤ 36.

• BBU is efficient whenN small (N ≤ 36)but is not applicable to large-scale
problems.
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Table 1. The performance of BDCE, BDCEU and BBU for the first class of spin-glass
problems

BDCE BDCEU BBU

N num iter CPU iter CPU NLB2 NALB2 iter CPU

9 8 9 0.02 1 0.00 0 0 9 0.28

16 14 216 10.17 31 2.80 50 38 141 6.95

25 22 740 94.8 21 4.77 30 16 115 17.8

36 34 21750 6045 61 32.25 93 27 563 187.5

49 46 9 3.93 9 5.37 8 0 797 5883.78

64 60 17 15.48 17 22.08 26 10 1273 2020

81 76 10 12.22 10 19.33 11 1 3002 6097

100 96 30 89.92 24 109.83 40 14

121 116 10 28.98 10 49.63 11 0

144 138 26 251.57 26 331.18 44 12

169 162 16 128.43 16 208.4 23 7

196 190 19 228.35 19 373.37 30 3

225 218 19 288.62 19 503.35 30 2

256 248 24 531.55 24 897.37 40 4

289 280 20 568.02 20 1016.05 32 0

324 316 25 812.02 25 1510.88 42 4

361 390 21 877.8 21 1746 20 8

5.2. THE ‘ DIFFICULT CLASS OF TEST PROBLEMS’ IN [30]

In this experiment we solved the following class of problems given by Pardalos et
al. in [30]

min

{
f (x) := − n(n− 1)

n∑
i=1

xi −
n/2∑
i=1

xi

+ n
∑
i<j

xixj + n
∑
i>j

xixj : x ∈ {0,1}n
}
. (40)

Pardalos et al. regarded that as adifficult class of test problemssince (40) has an
exponential number of discrete local minima. As indicated in [30], forn even, the
global solution of (40) is the point

x∗ = (1, . . . ,1,0, . . . ,0)T (41)

with exactly n/2 ones followed byn/2 zeros and any point withn/2 ones is a
discrete local minimizer. Fol solving (40) we write this in the form(0,1)-quadratic
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Table 2. The performance of BDCE and BBU for
the second class of spin- glass problems

BDCE BBU

N num iter CPU iter CPU

9 18 1 0.00 3 0.08

16 34 1 0.02 9 0.4

25 56 1 0.07 13 1.67

36 82 26509 10355 86 17.27

49 116 1 0.4 23 14.43

81 196 1 1.03 9 26.15

100 392 1 1.97 498 1337.68

121 298 1 3.33 53 360.32

144 356 1 5.28

169 422 1 815

196 490 1 13.4

225 566 1 15.82

256 646 1 32.58

289 732 1 32.58

324 822 1 45.38

361 920 1 59.95

problem (1) whereA andb are defined by

A = −2n2I + 2neeT ,

bi = −1, i = 1, . . . , n/2; bi = 0, i = (n/2)+ 1, . . . , n.

Here I denotes the(n × n)-identity matrix. We can easily see that the largest
eigenvalue ofA is zero. SoA is an negative semi- definite matrix and we are faced
with a concave minimization program. Then applying Algorithm BDCE to solve
the problem

min
{

1

2
〈x,Ax〉 + 〈b, x〉 : x ∈ [0,1]n

}
, (42)

and following Algorithm 2b, we obtain a solution in{0,1}n.
For all test problems this algorithm stopped at the initialization step. The solu-

tion x̄0 of problem(QE0) is near to the optimal solution of (QB) and Algorithm
2b provided this solution after one iteration. So the efficiency of the branchy and
bound algorithm only depends upon the performance of BDCE for 21 problems
of ‘the difficult class of test problems’ (40). To demonstrate the efficiency of Al-
gorithm 1 we employed this and Safeguarding algorithym proposed by Moré &
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Table 3. A ‘difficult class of test problems’ [30]

n BDCE-ALG1 BDCE-SFG n BDCE-ALG1 BDCE-SFG

50 0.02 0.25 600 3.18 545.6

100 0.03 1.96 650 3.68 787.2

150 0.2 6.37 700 4.32 994.0

200 0.35 14.85 750 4.92 1233.5

250 0.53 32.77 800 5.57 1506.8

300 0.79 56.17 850 6.34 1822.6

350 1.05 101.43 900 7.49 2163.4

400 1.41 134.69 950 7.84 2633.4

450 1.66 220.01 1000 8.43 3022.7

500 2.17 269.3 1500 18.93

550 2.71 416.4

Abbreviations:BDCE-ALG1 – time in seconds of Algorithm BDCE with
subprocedure being Algorithm 1; BDCE-SFG – time in seconds of Algorithm
BDCE with subprocedure being Safeguarding algorithm.

Sorensen [29] for solving Problem(QE0). In columns 4 and 5 of Table 3 we
reported CPU time (in seconds) of Algorithm BDCE using Algorithm 1 and Safe-
guarding subprocedure, respectively. In Safeguarding algorithm we tookσ1 =
10−5.

It is interesting to note that in [30] Pardalos et al. reported that for solving
problems of this class the initial incumbent (obtained by heuristic algorithm) of
their branch and bound algorithm was the solution but it took excessively long to
prove the optimality.

5.3. A CLASS OF CONCAVE MINIMIZATION PROBLEM WHEREa IS A DENSE

RANDOM MATRIX

In the third experiment we solved 40 problems of the form

min
{

1

2
〈x,Ax〉 : x ∈ {0,1}n

}
. (43)

We setA = PDPT for some orthogonal matrixP and a diagonal matrixD. P =
Q1Q2Q3, wheereQj = I − 2wjwTj /‖wj‖2, j = 1,2,3 and the componentswj
are random numbers in(−2,2). The diagonal elements of the matrixD are random
numbers in(−50,0).

We tookε = 0.01 whenn < 40 andε = 0.05 whenn ≥ 40.
Table 4 indicates the performance (number of iteration and CPU times in sec-

onds) of three algorithms BDCE, BDCEU and BBU. As in Tables 1 and 2, we
present also the quantities NLB2 and NALB2 of BDCEU. We solved 5 problems
of each dimension and took the average result.
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Observe that for solving this class of problems BBU is more efficient than
BDCE. Thus, the use of BDCEU is interesting for BDCE.

Table 4. Comparison between BDCE, BDCEU, BBU in the third experiment

BDCE BDCEU BBU

n iter CPU iter CPU NLB2 NALB2 iter CPU

10 1 0.02 1 0.02 0 0 4.6 0.04

20 30 1.02 13.6 0.6 15 5 3 0.07

30 95.6 5.96 69 7.2 79.6 22.3 19.6 1.28

40 15 1.03 1.6 0.33 2 2 1 0.08

50 239 43.8 52.2 18.7 56 24.6 59 12.1

60 111.6 18.5 5 1.62 3 3 1 0.15

80 1229 425.2 25.6 20.3 39 17 3.6 1.5

100 1939 1139.22 105 107.6 150 56 16 10.1

In Table 5 we reported in more detail the performance of BDCE for this class.
The column labeleditA2b indicates the iteration for which Algorithm 2b provides
anε-global solution while the column labeledγ 0 (resp. OPT) indicates the upper
bound at step initialization (resp.ε-optimal value).

Observing the quantitiesγ 0 in column 5 of Table 5 we see that Algorithm 2b
provides either anε-solution or a very good approximation for the optimal value at
the very initialization step.

In the last experiment we study tyhe performance of BDCE for different toler-
ancesε and different branching procedures. In Table 6 we provide examples of the
form (43) with the same data as in Table 5 indicating the performance of Algorithm
BDCE for different tolerancesε. Table 6 indicates that in this experiment one can
obtain the sameε-optimal solution with different values ofε.

It is interesting to investigate the influence of the branching strategy used in
the algorithm. Table 7 gives the performance of Algorithm BDCE (number of
iterations and CPU time in seconds) using different branching procedures (Rule
1 and the combined Rule 2 – Rule 1) for 6 problems of the form

min{F(x) := (1/2)〈x,Ax〉 : x ∈ [−1,1]n}, (44)

whereA is negative semi-definite matrix.
The data was randomly generated in a similar way as described in the third

experiment. Here the componentswj are random numbers in (−50, 50) and the
diagonal elements of the matrixD are random numbers in (−100, 0). Of course
we took the same tolerance(ε = 0.05) in two cases in order to obtain the same
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Table 5. More details about the performance of BDCE

n iter CPU itA2b γ 0 OPT n iter CPU itA2b γ 0 OPT

10 1 0.03 0 −97.398 −97.398 50 15 1.37 2 −845.89 −848.25

10 1 0.01 0 −147.684 −147.684 50 696 129.27 294 −565.08 −571.8771

10 1 0.02 9 −116.82 −118.36 50 9 0.78 0 −786.91 −786.91

20 81 2.9 2 −277.82 −282.40 60 186 31.85 34 −819.38 −821.5455

20 7 0.14 0 −310.36 −310.36 60 99 16.15 0 −805.85 −805.85

20 3 0.08 0 −301.08 −301.08 60 50 7.62 0 −868.14 −868.14

30 120 7.8 7 −421.61 −424.65 80 1123 276.17 56 −1049.13 −1050.2282

30 10 0.92 0 −339.78 −339.78 80 1092 569.43 61 −987.76 −990.0716

30 157 10.51 124 −371.33 −371.77 80 1473 430.00 131 −986.89 −994.67

40 43 2.88 0 −553.89 −553.89 100 1938 1138.32 6 −1197.47 −1203.22

40 1 0.10 0 −630.20 −630.20 100 2002 1142.22 2000−1266.20 −1268.41

40 1 0.13 0 −575.09 −575.09
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Table 6. Behavior of BDCE for different tolerancesε

ε = 0.01 ε = 0.05 ε = 0.06

n iter CPU OPT iter CPU OPT iter CPU OPT

30 120 7.8 −424.65 18 0.72 −424.32 2 0.07 −421.6

30 10 0.92 −339.78 9 0.63 −339.78 9 0.63 −339.78

30 157 10.51 −371.32 9 0.35 −371.32 9 0.35 −371.32

40 944 74.2 −553.89 43 2.88 −553.89 30 2.40 −553.89

40 36 3.1 −630.20 1 0.10 −630.20 2 0.10 −630.20

40 48 4.6 −575.09 1 0.13 −575.09 2 0.13 −575.09

Table 7. Behavior of BDCE for different branching procedures

Rule 1 Rule 2 – Rule 1 Rule 1 Rule 2 – Rule 1

n iter CPU iter CPU n iter CPU iter CPU

10 235 3.36 118 1.96 15 3197 60.92 93 4.85

10 542 3.92 24 0.49 15 18444 400.20 3 0.31

10 389 5.72 20 0.31 15 1642 29.41 7 0.58

optimal solution. The rectangular bisection of a longest edge (Rule 1) is bad. The
main disadvantage of this is that the generated ellipsoids do not provide a good
lower bound: it is often happened thatβ(Kki ) ≤ β(Kk)(i = 1,2)). So the lower
bound is improved very very slowly.

Conclusion

We have proposed a new branch and bound algorithm based on d.c. optimization
algorithms and ellipsoidal technique for nonconvex quadratic programming prob-
lems with box constraints. The main contribution of this paper is to give a good
combination between local and global approaches: first we have provided a simple
and efficient algorithm using the information of bounding procedure for finding a
good local minima of box constrained quadratic problem; secondly, we have used
the elippsoidal technique for bounding based on an efficient algorithm (the DCA)
for the ball constrained quadratic problem we have studied also the new branching
procedure in rectangular partition in order to well adapt to the new ellipsoidal
bounding technique.

Preliminary experiments showed the efficiency as well as the limit of BDCE.
The advantages are that either anε-optimal solution or a good feasible point is
obtained rapidly by Algorithm 2a (or 2b) and thereby a lot of number of generated
ellipsoids are deleted from further consideration. Therefore, in general the algo-
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rithm is efficient for a proper choice of toleranceε (nevertheless this choice does
not present always exactly the quality of the solution obtained, see e.g. Table 6).
Moreover, the proposed algorithm is very efficient for some classes of problems
(Tables 1, 2, 3). Again, both Algorithm 1 and Algorithm 2a or 2b (the DCA)
for subproblems in bounding procedures are simple and not expensive. The limit
is that, as often happened in a branch and bound algorithm, the lower bound is
improved slowly. That is why we introduced the second process of lower bounding
(BDCEU) in such a case. In the study of the performance of BDCE, an open
question is that which ellipsoid can be chosen to warrant the best initial lower
bound? Meanwhile our ellipsoid technique seems to be quite suitable.
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