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Abstract. In this paper we propose a hew branch and bound algorithm using a rectangular partition
and ellipsoidal technigue for minimizing a nonconvex quadratic function with box constraints. The
bounding procedures are investigated by d.c. (difference of convex functions) optimization algo-
rithms, called DCA. This is based upon the fact that the application of the DCA to the problems
of minimizing a quadratic form over an ellipsoid and/or over a box is efficient. Some details of
computational aspects of the algorithm are reported. Finally, numerical experiments on a lot of test
problems showing the efficiency of our algorithm are presented.
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1. Introduction

We shall be concerned with the well-known problem

(QB) min{f(x) ::%(x, Ax) + (b, x) :

—o00o<l; <x; <u; <+o0, i:l,...,n}

with A being an(n x n) symmetric matrix, and, x € R". A special case of
(QB) is the unconstrained quadratic zero-one problem which has many impor-
tant applications, particularly in combinatorial optimization, and is formulated as
follows

min {f(x) = :—zl(x, Ax) + (b, x) : x € {0, l}”} . Q)
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Indeed, writing (1) in the form

min {%(x, Ax) + (b, x) + é((e,x) —{x,x)) : x €0, 1}”} ) (2)
we have
(2) & min {%(x, (A—1tDx) + <b + %e, x> :x € [0, 1]”} , 3)

wheree is the vector of ones andis a real scalar such that — ¢ is negative
semidefinite.

Several algorithms have been proposed for globally solving these problems [see,
e.g., 3,8,9,11,15-17, 30-32, 40, 42]. More generally, there exists in the literature
a lot of methods for solving the nonconvex quadratic programming, among them
branch-and-bound algorithms whose branching operation takes places only in the
‘negative eigenvalues space’ have been shown to be efficient [see e.g. 4, 20, 39, 41,
53].

The procedures often used in the existing methods are to relax the constraints
and to perturb the objective function. The branching is usually base dupon rectan-
gular and/or simplicial partitions.

Ellipsoidal techniques have been used to state estimations for optimal values in
nonconvex quadratic programming [21-23, 53, 54]. In Vavasis [53] an approxima-
tion algorithm was proposed for finding arapproximate solution. It was shown
that such an approximation can be found in polynomial time for fixeuhd ¢,
wheret denotes the number of negative eigenvalues of the quadratic term. In a
series of paper by N. Karmarkar et al. [21-23], continuous methods for integer
guadratic programs (more precisely the linear inequélity, 1} satisfiability prob-
lem which is equivalently translated into maximizing the square of Euclidean norm
on [—1, 1]" subject to linear inequalities) have been investigated. These methods
used ellipsoidal techniques (each iteration requires solving a nonconvex quadratic
program over an ellipsoid), interior point algorithm [22], and Riemannian metric
for defining the search region [21, 23].

In [23] a new variant is introduced Karmarkar et al. [22] where the Riemannian
metric used for finding the search region is dynamically modified. Their approaches
are basically different from ours. For globally solving a nonconvex quadratic
program on an ellipsoid, N. Karmarker et al. used an adapted version of Moré-
Sorensen’s algorithm [29]. It has been recognized that the latter is expensive to
implement (because it uses Cholesky factorization procedure) and non suitable to
the large scale setting. The recent powerful algorithms by Sorensen [50], Santos &
Sorensen [47, an improved version of 50] and by Rendl| & Wolkowicz [45] aimed
to remedy the above mentioned drawback.

The method we study in this paper is a combination of the branch and bound al-
gorithm and the d.c. optimization approach. The d.c. optimization algorithm (called
DCA) introduced by Pham Dinh Tao [33], is a primal-dual subdifferential method
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for solving a general d.c. program of the form

(Pye) a=inf{F(x) =gx) —h(x):x e R"}, g, h € To(R")
and its dual given by

(Dge) a=inf{h*(y) —g*(y) : y € Y}.

HereT'o(R") is the set of all proper lower semi-continuous convex function®bn
which is equipped with the canonical inner prodyct), Y is the dual space @&”"
which can be identified withR" itself, g* is the conjugate function belonging to
I'g(Y) and is defined by

g"(y) =sup(x,y) —gx) : x e R'}.

Based on the d.c. duality and the local optimality, the DCA consists in the
construction of two sequencgs®} and {y*} such thatc* (resp.y¥) is a solution
to the convex programPy) (resp.(D,)) defined by

min{g(x) — [A(x*) + (x —x*, Y"1 x e X}, (Po)

min{h*(y) — [g*G* D + Ky =y Dy e ¥} (DY

In fact, (P,) (resp.(Dy)) is obtained from(P,.) (resp.(D,.)) by replacingh (resp.
g*) with its affine minorization defined by* e 9k (x*) (resp.x € dg*(y¥™1)). In
other words, starting with & in doma#, the DCA reads

yk € dh(x"); xftle ag*(yk).

By this way, the sequencgs*} and{y*} satisfy the following conditions [1, 33,
37]
(i) The sequence (x*) — h(x*)} and{h*(y*) — g*(y*)} are decreasing and

o g(x* Ny — h(x**1) = g(x*) — h(x*) if and only if y* € dg(x*) N dh(x"),
yk e 0g(x**h) N ar(x* 1) and[p(g) + p(M)]|lx* — x| = 0.

o (Y — g* (M = h*(y*) — g*(y") if and only if x**1 € 3g* () N
dn*(yh), X1 e ag*(ythnanr* (yHh and[p (g)+p ()] |y =y || =
0.

(0 (g) denotes the modulus of strong convexitygdf

(i) Every limit point x* (resp.y*) of the sequencex*} (resp.{y*}) is a critical
point of g — h (resp.h* — g*).
(Remember that a pointis calledcritical pointof g — 4 if dg(x) N dh(x) # 0).
Important and interesting questions in the use of the DCA are the choice of the
d.c. decomposition of the objective function and the initial pafhto ensure con-
vergence of the DCA to a global minimizer. They are open questions to be studied
for the specific structure of the problem being considered. This d.c. optimization
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approach has been improved and completed from both theoretical and numerical
viewpoints after the works of the authors of this paper appeared in which the DCA
has been successfully applied to many large-scale d.c. optimization problems [see,
e.g., 1, 2, 37 and references therein].

The DCA plays a key role in this paper. The first use of the DCA deals with the
lower bound computation scheme. We apply the DCA to solve the problem (QE)
which is obtained from (QB) by replacing the box constraint with an ellipsoid
containing the selected box. Our main motivation for the use of this technique
is that the DCA is very efficient for globally minimizing a quadratic form over
an Euclidean ball [37]. The second use concerns the upper bound computation
process. For finding a good quality of feasible solutions we apply the DCA to
solving (QB) from good starting points which are obtained while computing lower
bounds. Having its source in the theory of d.c. optimization, DCA is a new al-
gorithmic concept for solving d.c. programs. For both box constrained nonconvex
quadratic programs and ball constrained nonconvex quadratic programs DCA re-
quires only matrix-vector produces and proved to be very efficient and robust [1,
37]. In particular for the latter (which constitutes an important step in our algo-
rithm) many numerical experiments have shown the efficiency and robustness of
DCA with respect to Sorensen’s algorithm [50], Santos—Sorensen’s algorithm [47]
and Rendl-Wolkowicz’s algorithm [45].

In the next section we describe the branch and bound scheme for solving (QB).
First, we present in Subsection 2.1 the procedure for computing lower bounds. This
is based on the DCA for the ball constrained quadratic problem. In Subsection 2.2
we study the DCA for minimizing a quadratic form over a box. The branching
procedure is discussed in the next subsection. In the last subsection we provide
the summary of the branch and bound algorithm and its convergence. In Section 3
the implementation of our algorithm and some illustrative examples to it are given.
Using an affine linear transformation we propose a very simple implementation
of the algorithm which does not need a large memory storage. A variant of our
branch and bound algorithm is presented in Section 4. There, we introduce a second
process for lower bounding in which a convex underestimation of the objective
function is considered. Finally, in Section 5 we present computation results on
several classes of test problems, among them is Spin-glass problem which has an
important application in physics.

2. Abranch and bound algorithm via DCA and ellipsoidal technique
(BDCE)

The algorithm we are going to describe starts with an ellipgdictontaining the
feasible regionk® of (QB). If a minimizer of f over EC is feasible then we stop

the process. Otherwise, we divid€® into two rectangles (rectangular bisection)
and construct two ellipsoids such that each of them contains one of the just divided
rectangles. To improve the lower bound we compute minima oh each newly
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generated ellipsoid. The procedure is then repeated by repl&dimy a rectangle
corresponding to the smallest lower bound afiwith an ellipsoid containing

this rectangle. As this procedure repeats infinitely many times two infinite nested
sequences of rectangles and ellipsoids are generated and shrink to a singleton. The
convergence of the algorithm thus is ensured.

2.1. LOWER BOUND— GLOBALLY SOLVING BALL CONSTRAINED QUADRATIC
PROBLEM BY THE DCA

For general polyhedral convex set$ it is easier to use the technique of halving
ellipsoids for constructing the ellipsoii* (of minimal volume) containingk*.
In our problem the simple rectangular shapekdf makes possible the following
construction ofE* which seems to be better (at least in practice) than the Loéwner-
John process.

Let S be the ball with the centre at origin and of radiy& containing the
rectanglel’ = [—1, 1]"

S={xeR :|lx| = vn}.

Using the bijective affine transformatian such thatl’ = LK, we can define an
ellipsoid E containing the rectanguld = []_; [a;, #;] as follows:

E={x eR": (D%, x)+2(Dc,x) <n—{c,c)}=L1s, (4)
whereD = diagd, ... ,d,), d, c € R" and satisfy

a'j:2/(tj—aj),j:1,...,n, (5)

cj=(aj+tj)/(aj—tj),j:l,...,n. (6)
Moreover, we obtain the following connection between the volumes ahdS:

vol(S)
VOI(E) = ————. 7
(E) Ty dl (7)

Since the subrectangles® = []/_; [af, ] shrink to a singleton, the numbers
df = 2/(tF —af) fori = 1,...,n tend to+oo. Hence the sequendeol(E¥)}

decreases to zero s~ +ooc.
The lower bound off in our algorithm is improved by the solution of the
problem

(QE) min{%(x, Ax) 4+ (b,x) 1 x € E}

Again by the transformatiol. one hast € E < y = Lx € §, so the last problem
is equivalent to

. 1
min {§<y, D'AD™y) +(D'q — D*AD e, y) 1 Iyl < n} . (8)
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Clearly, D~*AD~1is an(n x n) symmetric matrix.
Now we study the general ball constrained quadratic problem in the form

. 1
(QBA) mm{F(x) = E(% Qx) +(q.x) : x|l < r}-

(As beforeQ is a(n x n) symmetric matrixg € R* andr > 0.)

First, we give a brief history of this problem which is often called the trust-
region subproblem. It arises as the main subproblems in a class of nonlinear pro-
gramming algorithms called model trust region methods which have been intro-
duced by Levenberg [25], Marquardt [28] and have been successfully developed
in the works of Gay [13], Moré & Sorensen [29, 48], Pham Dinh Tao and his
coworkers [34-37]. To our knowledge the first efficient (primal-dual) algorithm for
solving (QBA) is due to Moré & Sorensen [29]. These authors used safeguarding
technique combined with an adapted Newton method (due to Hebden) for com-
puting a saddle-point of the Lagrangian functib@, A). In the same primal-dual
approach Pham Dinh Tao et al. proposed in 1989 [34, 35] a dichotomy process as an
alternative for the safeguarding technique of Moré—Sorensen. According to many
comparative numerical simulations [34, 35], the dichotomy algorithm seems to be
less expensive than the safeguarding one. A simple bisection method was proposed
by Ye [54] and Vavasis & Zippel [51]. Recently, matrix-free methods [45, 47, 50]
have been introduced to solve large-scale problems. These methods recast the trust-
region problems in terms of a parametrized eigenvalue problem and only require
matrix-vector products.

While minimizing a nonpositive semi-definite quadratic function over a poly-
hedral convex set has been shown to be NP-hard, minimizing the same objective
function on an Euclidean ball can be solved effectively by some polynomial time
algorithms [see 52 and the references therein]. We can explain this ‘luck’ by the
fact that Problem (QBA) is one of few nonconvex programs which possess, as in
convex case, a complete characterization of its solutions.

THEOREM 1 [13, 29, 34, 36]x* is a global optimal solution to (QBA) if and
only if there is a real numbexr* > 0 such that:

) (Q+rDx*=—q,

@) xl < r Al —r) =0,

(iii) (Q 4+ A*1) is positive semi-definite.
Such ar* is unique.

A point x* satisfying the first two conditions is called Kuhn—Tucker point for
(QBA), the corresponding nonnegative numbeéiis called Lagrangian multiplier
associated with*. It is uniquely defined by

M= —[{0x", x%) + (g, x4/ 72 €)
Finally (A*, x*) is called Kuhn—Tucker pair for (QBA).
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In this paperp, < A, < --- < A, are the eigenvalues @ and¢ is a function
defined onR\{A; : i =1,... ,n} by (1) = ||[x(A)|| wherex(A) is the solution of
(Q+Ax = —gq.

The following result of Martinez [27] emphasizes the relationship between local
and global solutions to (QBA).

THEOREM 2.
(i) If x*is local-nonglobal minimum for (QBA), the&i® + A*I)x* = —g with
nonnegative.* €] — A, —A1[ and¢’(A*) > 0.

(i) There exists at most one local-nonglobal minimum for (QBA).
@iy If |x*]| = r, (Q + A*)x* = —g for some nonnegative* €] — Ay, —A4[
and¢’(A*) > 0, thenx* is a strict local minimum for (QBA).

(iv) If ¢ is orthogonal to some eigenvector associated withithen there is no
local-nonglobal minimum for (QBA).

In d.c. optimization approach we propose here a new algorithm for globally solving
(QBA). Although the DCA is not a polynomial time algorithm, numerical experi-
ments [1, 2, 37] indicated that this method works very well in practice. The DCA is
an iterative method which is quite different from known related algorithms. Thanks
to the particular structure of the problem under consideration, normally the DCA
becomes very simple (it requires only matrix — vector products) and in practice con-
verges to a global solution. For checking the global optimality of solutions provided
by the DCA we use the inexpensilraplicit Restarted Lanczos Meth@ddRLM) of
Sorensen [49] to compute the smallest eigenvalue of the related ngatixd a
corresponding eigenvector. A simple numerical procedure has been introduced (in
case of nonglobal solutions) to find a feasible point having a smaller objective and
to restart the DCA with this point. It has been stated that in nonconvex ¢age (
nonpositive semidefinite) the DCA with at most 2- 2 restarts iz is the number
of distinct negative eigenvalues ) requires only matrix-vector products too and
converges to a global solution. This fact (see Remark 3) is guaranteed by Theorem
3.

To explain the nature of DCA's convergence, let us state the following features
of Kuhn—Tucker points for (QBA).

LEMMA 1. If F(x) = 1/2(x, Ox) + (g, x) with O being symmetric andQ +
ul)y = —q,thenF(x) = F(y) — u/2(Ix[1* = IyI1®) + 1/2(x — y, (Q + pul)(x —
»), Vx.

Proof. We have

=

Fx)=F()+{x—y,0y+q)+5(x—y,0(x —y)

N

1
=F(Qy) —ulx—y,y) + §<x =y, (Q+ul)(x —y))

—%(x—y,x—y%
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Sincen/2(x — y,x —y) = u/2(Ix11* + IyI?) — nix, y), we get

I w
—§<x — VX =y —px =y, y) =— E(IIXII2 +lIy1%
o’
+ullyl? = =S Axl® = y1®),
which proves the lemma. O

LEMMA 2. Let(u1, x1) and(uo, xo) be Kuhn—Tucker pairs for (QBA), then =
wo ifand only if F(x1) = F(xp).
Proof.If u1 = up, = u, then according to Lemma 1

F(x2) = F(x1) — %(IIXzIIZ — llxall?) + %<x2 —x1, (Q + pl)(xz — x1)).
But (Q + ul)(x2 — x1) = O becausé€Q + ul)x; = —g = (Q + ul)x,. Hence
F(x2) + F(x1) — %(sznz =[x
Since eithefw = 0 or ||x4|| = ||x2|| = r, we haveF (x1) = F(x,).
Conversely suppose that(x;) = F(x,). We can assume without loss of gener-

ality thatx, # x, because; = x, impliesu; = u, in virtue of (9). Consider first
the case wherg; andu, are positive. It follows from Lemma 1 that

1
F(x2) = F(x1) + E(Xz —x1, (Q + pal)(x2 — x1))
becausei; > 0 andu, > 0imply ||x1|| = r = ||x2|. Hence

—(x2 — x1, Q(x2 — x1))

U1 = 10
' oz — x12 (10)
Likewise we get
—{x1 — x2, 0 (x1 — x2))
Ho = ———— = (11)
X1 — x|
Sou = uo.

It remains to examine the case whergor u, is zero, sayu, for instance. As
above we have (10) and hence

(x2 — x1, Q(x2 — x1)) = 0.

On the other hand we can write

1
F(x1) = F(x2) — %umnz — lx2l®) + 501 = x2, (Q + pal) (31 = x2)).



CONSTRAINED NONCONVEX QUADRATIC PROBLEMS 179
That is reduced to

pa(llx2ll? = Ixall?) + pallxz — x1)|* = 0.
If uo > 0, then|x,|| = r and

wa(r? = |Ix1l1?) + pallxz — xall? > 0.

The proof is then complete. O

Let us indicate here that the statement in Lemma 2 has been earlier stated in
[26]. ‘ F(x1) = F(x») for Kuhn—Tucker pairgu, x1) and(u, x2)'.

We shall state now the main result of Kuhn—Tucker points for (QBA) which is
useful to appreciate DCA's convergence:

THEOREM 3. The numbep of distinct multipliers associated with Kuhn—Tucker
points for (QBA) is equal to the number of distinct values of the objective function
F(x) at Kuhn—Tucker points. Moreoveris at mostmin{2m + 2, 2n + 1}, where
m is the number of distinct negative eigenvaluegof
Proof. According to the above displayed results, it suffices to prove ghat
min{2m + 2, 2n + 1}. As in [26], the idea follows from a result of Forsythe and
Golub [12]. For the sake of completeness we give below a sketch of the proof.
Let V be an orthogonal matrix composed of eigenvectors associated with the
eigenvalues.; < --- < A, of Q andA be the diagonal matrix whose entries are
A, ..., A, suchthatV” Qv = A. Let A be a positive multiplier for (QBA). The
linear equation

(Q+ADx=—¢q (12)

must have at least a solution such thal = r. In other words, with the change of
variablesu = Vx andd = Vg, the problem

(A+ADu=—d, Ju|l=r (13)

must have a solution.
Finally, 2 must be a solution of the nonlinear equation

oA =r, 1=0, (14)
where
n 72 1/2
#0) = {Z m} ‘

Main properties ofp (1) have been investigated in [36]. It tells us, in particular,
thaty € C*(R\{—A; :i =1, ... ,n}) and is strictly convex on each open interval
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contained inR\{—A; : i = 1,...,n}. The functiong (1) has poles at-1;, (i =
1,...,n) and tends to zero astends totoco. Thus the equatiop (L) = I" has at
most 2 roots in each interval A;, —X;_1[ and one root in each extreme interval.
If A, >0foralli =1,...,n,then there is at most one nonnegative roat; ik 0
foralli = 1,...,n, then there are at mostn2+ 1 nonnegative roots. Hence the
problem (14) has at most n{i&= + 1, 2n} nonnegative roots. Taking into account
the possible case of Kuhn—Tucker paiks x) with A = 0, we can conclude that
there are at most mi@m + 2, 2n + 1} multipliers for (QBA). O

The next result follows from the preceding ones:

COROLLARY 1. LetO < pu1 < --- < u, be the set of Lagrangian multipliers
for (QBA). LetX T (resp. KT (u;)) be the set of Kuhn—Tucker points for (QBA)
(resp. the set of Kuhn—Tucker points associated wj)hWe have
(i) KT =U_ KT ().
(i) KT (u;) is compact and identical with the set of Kuhn—Tucker points at
which the objective functiof'(x) takes the same value

KT () ={xe XT: Fkx) =o};

it is reduced to a singleton iu; ¢ {x; : j = 1,...,n} (the set of
eigenvalues 00).

@iy a =min{FX) : x|l <r} =mn{FXx) :x € XT} = minfe; : i =
1L....pl=q
and X7 (u,) is exactly the solution set to (QBA).

(iv) The sequencgx®} generated by DCA has all its limit points belonging to
one and onlyX 7 (u;). If x* is a limit point of {x*} then its associated
Lagrangian multiplierr* is given by

M= —[(x*, Qx*) + (g, x7)1/r?
and we have.* = u;.
(v) The whole sequendg* = —[(x*, Ox*) + (g, x¥)1/r?} converges ta.*.
For solving (QBA) we use the following d.c. decomposition which has been shown
to be an efficient one from the computational viewpoint:
1 2 T 1 T
gx) = EpIIXII +q x+ xc(x); h(x)= >X (pI — Q)x, (15)

where x¢ stands for the indicator function of the ball .= {x € R" : ||x|| < r}
andp is a positive number such that the matfid — Q) is positive semidefinite.
With this decomposition Problem (QBA) takes the form

(QBA,.) min{g(x) —h(x):x € R*}.
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SinceVh(x) = (oI — Q)x for anyx in R", the DCA applied to (QBA,) is reduced
to construction of two sequences'} and{y*}(k > 0) satisfying

yE = (oI — Q)x%, (16)

L ¢ arg min{gnxn2 42T (@ =)+ xe(x) s x € ]R”} , (17)

wherex?® e C is given in advance.
Clearly,x**1 is a solution of the following problem

k 2

Yy —dq
0

min
xeC

X —

Hence x**1 is just the projection ofy* — ¢)/p onC, i.e.,

= po (xk — %(ka + q)) . (18)

ALGORITHM DCQBA (DCA for computing a Kuhn—Tucker point of Problem
(QBA)). Lete > 0 be small enoughy be a positive number such that the matrix
(pI — Q) is positive semi-definite and e C be given. Set < 0, er < 1.
While er > e do
If (o — @)x* — gl < pr, then takex*™ = [(p] — Q)x* —q]/p
elsetakex**! = r[(pI — Q)x* — ql/l(pI — Q)x* —ql|
endif
— (kL QukHly — (kL g
2
er = max{||(Q + k"“I)xk*{ —qll, M — (1)
k<—k+1
endwhile

Ak-&-l —

REMARK 1.
e Inthe case = 0, exceptionally ifQ is positive semi-definite (for which zero
is a solution), we choose® such thaty® = (pI — Q)x° # 0, sincey® = 0
impliesx* =0, Vk > 1

e In practice, the convergence rate very much depends on the pallel-
merical experiments indicated that in general the closex,tthe positive
parameterp is, the better the DCA converges. Such “good” parameters
belong to{x > 0: & € [p*, p* + €]} wheree > 0 is sufficiently small and
p* defined byp* = 0if A, < 0, A, otherwise. Such a can be computed by
using the quite inexpensiteplicit Restarted Lanczos Meth¢409].
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THEOREM 4. ) ]
(i) F@EY < F5) — 2(p 4+ ) [x*+1 — x¥)12, whereh is the smallest eigen-
value of(pI — Q).

(i) F@E* \ o >aandlim,_ . |x**1 - x¥|| = 0.

(iii) Either there isp > 0 such thatx? is a Kuhn— Tucker point for (QBA), or
every limit pointx* of the sequencic*} is a Kuhn—Tucker point for (QBA).
Proof. Theorem 4 is an immediate consequence of the DCA's convergence theo-
rem for the general d.c. programming [see 1, 33, 37]. However, we wish to present
a direct proof of Theorem 4 that is better suited to this setting.
We have forx € C

F(r) = FO) + (0% + qox — ) + %<x 00— M),

So
FOMY = F(eb) 4+ (0xk + g, X — xby + %<xk+1 — x5, QR — XKy,
(19)
By definition (18) ofx**! we get
<xk — %(ka +q) — KL Xk — xk+l> <0, ie.,
(0x* + g, 2 —xk) < —plla**t = xH)2 (20)

Combining (19) and (20) gives

1
FOih) = Py — St — k|2 4 St — o, ot — ).

Finally we obtain

FOH) < F) = plle™ = k) = 24— b, (] = Q)6+ — ).

2
(21)

Now let 2 be the smallest eigenvalue of the positive semi- definite matfix Q.
Then we have

F(xk-‘rl) < F(Xk) _ %”xk-‘rl _ xk”2‘
The sequencgF (x¥)} being decreasing and bounded below then converges:to

o. Hence{||x*** — x*||} converges to zero singe > 0 andi > 0. It remains to
prove property (iii).
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Let x* be a limit point of{x*} (it exists since the sequenge’} is contained in
C). Since lim_, 4o [|x*1 — x*|| = 0 we get

x* = Pc (x* — %(Qx* + q)) . (22)

It is clear that (22) is the geometrical translation of the Kuhn—Tucker conditions:
there isA* > O such tha(Q + A*1)x* = —q, ||x*|| < r andA*(||x*|| —r) = 0. O

REMARK 2. It is clear that Theorem 2 strengthens the possibility for DCQBA
to reach a global minimizer to (QBA). In our numerical experiments DCQBA
converges always to a global solution.

Using DCQBA for globally solving (QBA)

From property (iii) of Theorem 1 we see that checking the globality of a solution
provided by DCQBA amounts to check the positive semi- definiteness of the matrix
QO + A*1. For this purpose, we use also IRLM for computing its corresponding
eigenvectowr: and then compare A1 with

— (", Ox") — (2%, q)

AF =
2

(23)

(following Theorem 1). In case if* < —A; (it means tha + A*I is nonpositive
semi-definite, i.e.u” (Q + A*Du = (A* + A)u’u < 0) we can restart DCQBA
from a new pointx for which F(x) < F(x*). Such a point can be computed as
follows.

a) If (g, x*) > 0, then takinge = —x* we haveF (x) < F(x*). Indeed, in virtue
of Lemma 1,

A* 1
F(x) = F(x*) — 7(||x||2 — Ix* 1% + S0 —x" (@ +ATD(x = x7). (24)

This implies
F(&)=F&™) 4+ 2((Q + A*Dx*, x*) = F(x*) — 2(q, x*) < F(x").

So we can restart DCQBA from the initial point
b) If (g, x*) < 0, then we distinguish two cases:
(b.1) If either|lx*|| < r or ||x*|| = r andu” x* # 0, then we tak& = x* + yu,
wherey # 0is chosen such théik || = r. More preciselyy is a nontrivial
solution of the equation

lul®y® +2u”x*y + |x*)* = r* =0
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which is given explicitly by

_ 2 )/ ul? it x| =r

T @y £ VBl ) <

whereA = (u”x*)% — |Jul2(||x*||? — r?).
So we can choose as the initial point for restarting DCQBA, since
2

F(&) = F(x*) + %w, (0 + M) < F(x®).

Note that in (25) the greater? is, the smallerF (x) becomes. Therefore,
a better value of is given byy = (—(u”x*) + v A)/|u|? if u”x* < 0,
(—u”x*) — /A)/|lu||? otherwise.

(b.2) If |x*|| = r, andu” x* = 0 (the latter implieg;” u = 0 since
(g.u) = —(u, (Q+ A1) = —(x*, (@ + A*Du) = —(* + Apu’ x*),

then we find a new vectar = u + tx* with t # 0 such that’ (Q +
A*Nv < 0 andv” x* # 0. Return to (b.1) using instead of.
To prove the existence of such a vectowe will proceed as follows. We have
vIx* = ulx* + |x*||? = tr2. SovTx* # 0 if and only ifr # 0. Since
(v, (Q + A" Dv) = T2(x*, (@ + A*Dx*) + 2t (u, (Q + A*)x*)
+ (u, (Q + A" Du)
= — (g, x")t% = 2{q, )T + {u, (Q + *Du)
= — (g, ¥")T% + (u, (Q + A" Du),
we deduce after several suitable computations the following properties:

o If g7"x* =0, thenv”(Q + A*I)v < 0 so allt # 0 is possible and optimal
choices ofr (which correspond to the best decrease of the objective function
F(x) while passing fromx* to k) are given byr € {t/ = —|ul|/r, 1" =
llull/r}. Moreover we have

() =-

(25)

r . r
—u, x(t')=—u
[Jue] [Jue]

and

l’2

FEE) = FEE) = F0O) + 5

(u, (Q +1*Du).

o If g7x* < 0, thenv” (Q + A*I)v < O if and only if t € {]z1, O[U]O, 72[},
wherer; andz, given by
[—u” (Q + 2 Du]'/?
- (_qTx*)l/Z ’

71 =

Tp = —T11.
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Optimal choices of, in this case, are

O O 1] | e R 0 01 i
T (@ Dur? = 2q T PR T

Remark thatr; < 7 < 0 < 7 < 1, and actually the casg¢’ x* = 0 can be
incorporated into the casg x* < 0 by takingr; = —oo andt, = +oo when
T ,.%
qg'x*=0.
Summing up we conclude that if a Kuhn—Tucker paifiproduced by DCQBA
is not a global solution to (QBA) then another poinisuch that||x|| < r and
F(x) < F(x*)) is already available for restarting DCQBA.

Finite convergence of DCA with restarting to an approximate global solution of

(QBA). According to Corollary 1, the sequengef} generated by DCA converges

infinitely to a Kuhn—Tucker point for (QBA) and the set of limit points{af} is

contained exactly in on& 7 (u;). Let x* be a limit point of{x*} then the whole

sequencgrf = —[(x*, Qx*) + (g, x*)1/r?} converges to* = —[(x*, Qx*) +

(g, x*)1/r* andr* = p;.

() If x* ¢ XT(u;) withi = p theni* = p, andx* is a global solu-

tion to (QBA). In this case, DCA provides after finitely many iterations an
approximate global solutiox' to (QBA).

(ii) If x* is a non global solution to (QBA), (i.ex* € K7 (i) withi # p)
then the aforementioned procedure provides a feasible poiiy such that
F(X(x*)) < F(x*) = F(x) < F(x?) forall p and allx € X7 ().

The crucial problem then is to leave the g6 (u;). According to the restarting
procedure, DCA provides after finitely many iterations an approximatfoaf x*
such thatx (x¥) is near tox(x*) and SoF (x(x¥)) < F(x*). Restart now DCA
from £° = x(x*), it follows from the strict decrease ¢F (&%)} (Theorem 4) that
KT (u;) contains na&* neither does the sequenpé ).

F@E) < <FE% < F(x*) = F(x) < F(xP)

for alll andp and for allx € KT (u;).
In practice such an approximate Kuhn—Tucker paihtcan be computed by
DCA as the firstv” satisfying

(@ +A"DxP —qll <&, A7 = 0, A7 (r — |x”]]) < &

with ¢ > 0 is small enough.
We now describe our global algorithm based on DCQBA for solving (QBA):

ALGORITHM 1 (globally solving (QBA)):
Initialization . Computer; andu by IRLM.
Compute an approximation, to A,, by IRLM.
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Letp := i, + 0.1, X € C, stop:= false.
While stop = falsedo
1. Apply DCQBA from the starting poirf := x to obtainx*.
2. Leta* = (—(x*, Qx*) — (x*, q))/r2.
If A* > —Aq, then stop:= true, x* is a global solution of (QBA)
elsecomputex such thatF (x < F(x*) and return to 1.
end while

REMARK 3. According to Theorem 3, for nonconvex program (QBA) Algorithm

1 requires only matrix-vector products and converges to a global solution after
at most 2n + 2 restarting procedures. In general we rarely have recourse to this
procedure.

2.2. UPPERBOUND — DCA TO BOX CONSTRAINED QUADRATIC PROBLEM

For finding a good feasible point we use again the DCA to Problem (QB), since the

DCA applied to this problem (with a suitable d.c. decompaosition) is very simple

and usually leads to a point which is a good approximation to a global solution.
Using a similar decomposition to (15) fét we obtain Algorithm 2a which will

be indicated below. This seems to be the most efficient decomposition since the

projection of a point over a rectangle is easily computed. More precisely, taking

1 1
a(x) = Epnxn2 + b x + xgo(x);  hi(x) = EXT(‘” — A)x (26)

(p is a positive number such that the matfix — A) is positive semi-definite) we
can write (QB) in the form of d.c. program

(QB) & min{gi(x) — h1(x) : x € R”}. (QBy,)

Then, as in Algorithm DCQBA, the DCA applied to (@B consists in the con-
struction of two sequencds*} and{y*} as follows

Y= (oI — A)x*; X = Pro((F — b)p). (27)

ALGORITHM 2a (DCA for computing a Kuhn—Tucker point of Problem (QB)).
Lete > 0 be small enoughy be a positive number such that the maiiixx’ — A)
is positive semidefinite and® € K° be given. Set < 0, er := 1.
While er > ¢ do

Y < (pI — A

Fori=1,...,ndo
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If I < (vf — bi)/p < u;, then takex/ ™ := (v} — b;)/p
else
if (¥ —bi)/p < I;, then takex* ™ := J,
elsetakex ™ := y;
endif
endif

endfor

er <« ||xk+l_ k”

k<~—k+1

endwhile

Consider now a special case of (QB) whdrés negative semi-definite matrix,
i.e, one is faced with a concave minimization problem. We propose another d.c.
decomposition defined by

X

g1(x) = xgo(x);  ha(x) = %(x, —Ax) — (b, x). (28)
The DCA applied to (QR.) is written as follows:

v = —Ax* —b; X1 e argumin(x, —y*) : x € K°). (29)
Since mif(x, —y*) : x € K% = >/, min{—x;y¥ : [; < x; < u;} we get

ALGORITHM 2b (for convex maximization programl)ete > 0 be small enough
andx® € K% be given. Set < 0, er < 1.
While er > ¢ do

b —Axk —b
Fori=1,...,ndo
If y* <0, then takex*™ :=
elsetakex ™ =y,
endif

endfor

er <« ||xk+1 k”

k<~<k+1
endwhile

— X

REMARK 4.
e Algorithms 2a and 2b require only matrix-vector products, thus they may be
applied to large-scale problems.
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e A d.c. program (R.) is calledd.c. polyhedralif either g or 4 is polyhedral.
This class of d.c. optimization problems, which is frequently encountered
in practice and has been extensively developed in our previous works (see
e.g. [1] and references therein), enjoys interesting properties (from both the-
oretical and practical viewpoints) concerning the local optimality and the
convergence of the DCA. Clearly, with the decomposition (28) (QB& a
polyhedral d.c. program singg = o is a polyhedral function. In this case
the DCA converges after a finite number of iterations (Theorem 9 of [1]).
Moreover, from Proposition 1 in [1] it follows that if Algorithm 2b provides
a solutionx* such that—Ax* — b € int 3K°(x*) (this condition is in many
cases satisfied), theri is a local solution of (QB).

e In our experimentations both Algorithm 2a and 2b converge very rapidly
(whenn < 500 the maximal number of iterations is 3) to a local minimizer
of (QB). Moreover they provide a global solution if the initial poiftis near
enough to a global one.

How to choose a good initial point for Algorithms 2a and 2big well-known that
Problem (QB) may have many local minimizers. Thus, to obtain a good approxima-
tion to its global solution we start Algorithm 2a (or Algorithm 2b) at each iteration
k from a suitable initial point}. The pointx} is chosen as follows: at iteratidn

one considers the ellipsoifi* corresponding to the smallest lower boudd.is a
candidate to ellipsoids containing a global solution. So starting Algorithm 2a (or
Algorithm 2b) from a point inE* N K° can detect a global one. A good point can
be taken by the projection a on K° which is a solution obtained by applying
Algorithm 1 to the problem

(QEY  B(K*) :=min {%(,x, Ax) + (b, x):x € Ek} .

More precisely we have the following procedure:
Procedure IP Let x* be an optimal solution of (Qf.
Fori=1,...,ndo
k

If I, < x* < u; then takexf, = i
else
If x¥ < [; thentakex§, :=1;
elsetakexd; := u;
endif
endif

endfor

Numerical tests indicated that (Section 5) by this way one can quickly reach
a good feasible point and thereby a lot of numbers of generated ellipsoids can be
eliminated from further consideration.
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2.3. BRANCHING PROCEDURE

For rectangular subdivision, the bisection process via a longest edge as thoroughly
discussed in Horst & Tuy [19], is often used. For example, in [20] and [38] the
following rule was proposed:

Rulel: Let K% = {x : a* < x; < t}} be a rectangle corresponding to smallest

lower bound which will be divided. Lef, be the index of the longest edge &f,
i.e., such that

k

ko _ k_ k -
tjk —a; —max{t,‘ a i=1..., n}L

Leta = 1/2(¢;, + a;,). Thenk* is bisected into two subrectangles:
. > al (30)

This process seems to be not well adapted to the ellipsoidal technique used in our
branch and bound algorithm. We propose an alternative bisection which uses the
solution of a current ellipsoidal constrained problem {RHhis is based on the

fact that if x* € K* then one has an exact evaluation o%&r and therefore the
rectanglek* will not be divided further. The following rule forceg* to enter in

K*.

k k.
K" ={x e K" :x;

= k k.
, <o}, K?={xeK":x

Rule2: For each selectel* we consider the solutiok* of Problem (QE). Let j;
be the index satisfying

max(xt — . al —x5) = _max max(xf — ¥, a¥ — x5). (31)
anda = 1/2(#;, + a;,). Thenk* is bisected into two subrectangles as in (30).

This procedure works very well in our numerical experiments. Nevertheless
using the Rule 2 one may meet an undesired fact: the lengffi' @fdge is near
to zero, i.e., the volume of the ellipsoil* containing K* shrinks to zero but
E* may not shrink to a singleton. In this case the convergence of the branch and
bound algorithm is not ensured. In order to prove the convergence of our algorithm
we combine Rule 2 with Rule 1. More precisely, we consider first the ingex
satisfying (31). If

k

1, — aj?k > §(8 being a given small positive number) (32)

then Rule 2 is used, otherwise we apply Rule 1.

By this way, our algorithm generates two whole sequendgy and {K*}
which shrink to a singleton dsshrinks to+oc. We observe that in our numerical
experiments Rule 2 is always used, i.e., (32) is always satisfied.
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2.4. THE DESCRIPTION OF THE BRANCH AND BOUND ALGORITHM AND ITS
CONVERGENCE

Using notions and procedures presented above we can now establish a branch and
bound algorithm for Problem (QB) as follows.

ALGORITHM BDCE
Initialization
Solve the following problem

(QE®% B(K®) :=min {%(x, Ax)+ (b,x):x € EO}

to obtain an optimal solutioi® and lower boungs® := B(K©).
If X0 € KO thenstop < true, x° is a global solution of (QB)
else

Solve the following problem by Algorithm 2a (or Algorithm 2b)

(OB) min{f(x) = %(x, Ax) + (b, x) : I; < x; < u;,

i:l,...,n}

from the starting point supplied by Procedure IP to obtain the best pbint
and upper boungt?, i.e., £ (x°) = y°.

If ¥0 = B(K?), thenstop < true, x° is a global solution of (QB)
elsestop <« false
endif
endif
SetR « {K%, k<« O0.
While stop = falsedo
Select arectangl&* € R such thap := B(K*) = min{B(K) : K € R}.

Update upper boung* by applying Algorithm 2a (or Algorithm 2b) to
(QB) from a starting point chosen as in Procedure IP.

Let x* be the known feasible point such thet = f(x*).
Bisectk* into K*1 andK*2,
ComputeB(K*) by solving ProblemgQ EX), (i = 1, 2)

(QE") B(K*) :=min {%u, Ax) + (b,x) 1 x € E""} .
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Let % be an optimal solution ofQ E%).
If x5 € K% and f(x;,) < y* then

yEi= f@); x* =5,

endif
If B(K*%) < B(K¥) then seiB(K*) «— B(K¥).
SetR «— RUKF: B(KF) < v, i =1, 2}\(K*}.
If R = ¢ thenstop < true, x* is an optimal solution.
elseSetk < k + 1.
endif

endwhile

THEOREM 5 (convergence of algorithm BDCD).
(i) Ifthe algorithm terminates at iteratiok, thenx* is a global optimal solution
to problem(Q B).

(i) If the algorithm is infinite, then it generates a bounded sequéntg every
accumulation point of which is a global optimal solution of (QB), and

VN Cfe BE S

(f. denotes the optimal value gfon K©°).

Proof. If the algorithm terminates at iterationthen g* := B(K*) = y* =
f(x*). Thus the part (i) follows from the definition @, y*, x*.

Assume now the algorithm is infinite, then it must generate an infinite sequence
{E*} of ellipsoids whose volumes decrease to zero. By the branching procedure,
the whole sequencgE*} and{K*} shrink to a singleton. On the other hand, from
the construction one sees that the sequefids nonincreasing, while the sequence
B* is nondecreasing and therefdye’ — g} is a nonincreasing sequence of positive
numbers. Hence, the whole sequende— g* must tend to zero. This angf <
f» < y* for everyk imply

YN e BN

Sincex*t € K% andy* = f(x*), any cluster point of the sequenge} belongs to
K° and has the function valug, i.e., solves problem (QB). The theorem is proved.
|

REMARK 5.
¢ In practice the following optimality criterion is used* > y* — ¢|y*| with
0 <& < 1. Sothe step “SeR < R U {KF: B(KF) < y¥, i = 1, 2)\{K*}”
in Algorithm BDCE is actually replaced by “Se® < R U {K¥ : B(KF) <
vk —ely*,i =1, 2)\{K*}". Hence, when the algorithm stops, we obtain an
e-optimal solution of (QB).



192 LE THI HOAI AN AND PHAM DINH TAO

e In the steplnitialization, the case wherg® ¢ K° andy® = g% may occur
if the optimal solution of(Q E°) is not unique. This corresponds to thard
caseof Problem @ E°) wheregq is perpendicular to K&Q — A.1) (see [29],
[34]).

3. Implementation and illustrative example

We give below some details of an implementation of Algorithm BDCE.

The most expensive operation in Algorithm BDCE is solving subproblem (QE)
at each iteration. Since (QE) is equivalent to (8), we define the objective function of
Problem (8) and then use Algorithm 1 to solve the last. So at each iteration we have
to solve two problems of the form (8) by Algorithm 1. Observe that the objective
functions of these two problems differ from each other only on the linear term.
Indeed, in passing from the rectangukéf which to be bisected at iteratidnto
subrectanglek* := ]‘[’}zl[a'j", tf"](i = 1,2) only the coordinatesf; andaf; are
modified. Then using (5) and (6), after a simple calculation, we get

ki _ ko _ k ky _ ko k

dj; = djt =4/ (15 —dj) = =2d; /¢, (33)
ki ok k k kN kN ok

cjkl = (3ajk +1,)/(a;, +1,)= 1+ ZCjk)/cjk, (34)
ke _ , k k k kN k

Cjk2 - (ajk + 3t./k)/ (ajk - t.ik) =-1+ 2Cjk‘ (35)

(As befored’ andc’ (i = 1, 2) denote the vectors containing diagonal elements of
the matrix DX which define the ellipsoid&* and the centres df* respectively).

It means that the ellipsoidg*t and E*2 are defined by the same matrix while their
centres are different. This allows us to reduce the number of operations as well as
the memory storage during the performing of the algorithm.

The most important in the computational implementation of a branch and bound
algorithm is the construction of a convenient computer scheme for storing and
updating the informaiton about partition elements. For eBotorresponding to
K € R we need save the following information: vectaisand ¢, the optimal
solutionx of (QE) (for finding a starting point of Algorithm 2a or 2b and choosing
the index of branching procedure) and the lower bogi(kl). Since a vecto# may
define two different ellipsoids, for storing these informations we use two linked
lists: POINT and ELLIP. The first list contains the coordinates of vector defining
an ellipsoidE € R, the second one contains the information about the ellipgoid
centrec, x, B(K) and the index of the vectai used to link these lists. In passing
from iterationk to iterationk + 1 at most one new element may be added to the
list POINT while an element selected in the list ELLIP will be replaced by at most
two new elements. An element in the list POINT will be deleted if all of its linked
elements in the list ELLIP have been deleted.
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However we do not need store any information about the rectakigterre-
sponding toE. As soon as an ellipsoifi* is selected for branching, using (5) and
(6) we can recover the edges of the rectarigteto be divided.

Let us provide now an illustrative example.

EXAMPLE: Consider the following problem
min{F (x) := (x, Ax) : x € K®:=[—1, 1]%}, (36)

-22 -1 7 —6
-1 -33 -4 7

7 -4 =27 1
—6 7 1 -38

We find ane-optimal solution of (36) withe = 0.02.
Step Initialization:Solving problem(Q E®) whereE® = {x € R* : ||x|| < 2}, we
obtain

B(K® = —180 andx® = (0.5165 —1.0325 —0.5163 1.54947 .

Applying Algorithm 2b to (36) from the point = (0.5165 —1, -0.5163 1)”,
we get the current best feasible paifit= (1, —1, —1, 1)” and upper boung® =
F(x%) = —168.

ThenStop:= false

Iteration 1 (k = 0) : K is divided into two rectangles by Rule 2

Kh={xeKk®: xs<0); K%2={xeK%:x4>0].
Solving (QE®) and(Q E®) we obtain

B(K) = —177,4677 % = (—0.5929 1.5471 0.9532 —0.79427 ;
B(K%) = —137,3199 % = (—0.3221 1.5467 1.2219 0.5524 .

SetR := {E%}.
Iteration 2 (k = 1): K% is divided into two rectangles

Kh={xeK%:x,<0; K?={xeKk™:x;>0).

Applying Algorithm 2b from the point—0.5929 1,0.9532 —0.79427, we get
xt=(-111 -7, F(x}) = —168 which is also the current best feasible point.
y1 = —168. Solving(Q El1) and(Q E*?), we obtain

ﬁ(Kll) = —153306Q it = (—1.3564 —0.5717,1.3653— 0.7624";

,B(Klz) = —179670Q i = (—1.1067,0.7522 1.4550— 0.81797.
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Setf(K12) := B(K®) = —1774677 andR := {E'2}.
Iteration 3 (k = 2): K*2 is divided into two rectangles

K21={xeK12:X3§0}; K22={XEK122)C3ZO}.

Applying Algorithm 2b from the point—1, 0.7522 1, —0.8178” we getx? = x*
theny? = —168. Solving(Q E?*) and(Q E?) we obtain

B(K?) = —1352690 i* = (1.6955 0.8368 —0.8227— 0.7525";
B(K%)=—1773723 % = (—1.55340.8019 0.8227— 0.9489".

SetR := {E?%)}.
Iteration 4 (k = 3): K2 is divided into two rectangles

K®={xeK?:x;<0; K*¥={xeKk?:x >0}

Applying algorithm 2b from the point—1, 0.8019 0.8227, —0.94897 we get
x% = x? and theny® = —168. Solving(Q E') and(Q E*) we obtain

B(K®) = —171056% % = (—0.8612 1.011Q 0.9145 —1.1608" ;
B(K*) = —1380100 % = (0.4883 1.1687,0.8278 —1.1673" .

HenceR := ¢ and thereforestop := true. Then bothx® andx! are s-optimal
solutions of (36).

Note that if we choose = 0.01 the algorithm gives the same optimal solutions
x% andx? after 9 iterations.

4. Avariant of BDCE (BDCEU)

A branch and bound approach using a convex underestimation (BBU) has been
successfully applied to indefinite quadratic programming in which the objective
function is the difference of a nonseparable convex part and a separable convex
part [1, 41]. For Problem (QB) we can introduce the following d.c. decomposition
of the objective function

1
f) = g(x) = hx) = Z{(A + pD)x, x) + (b, x) — gIIXIIZ, (37)

wherep is a positive number such that the matpik + A be positive semidefinite.
The convex functior(x) = (p/2) Y ", xl? is clearly separable in its variables:
h(x) =Y hi(x;) with h;(x;) = (,0/2)xi2. The convex underestimation ¢f(x)
on the subdivided rectangl€ = []/_; [a;, #;] is then ([1], [41]) g(x) — Pgk(x).
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Heregk (x) = Y ', ¢k, (x;) is defined by: fori = 1, ..., n, ¢, (x;) is the affine
function that agrees with; at the endpoints of the segmdat, ¢;]. In other words

ok, (x;) = g(ai +1)x; — gaiti-
BBU [1, 41] differs from BDCE in three points:

e The use of the convex underestimatigfx) — ¢ (x) for computing the lower
bound of f(x) over the subdivided rectangl€. We are faced with a box
constrained convex quadratic minimization problem which can be globally
solved by the DCA.

e The use ofw-subdivision in the branching procedure: for the selected subrec-
tangleK* we havep« (x*) — h(x*) > 0. Choose an indei satisfying

i € argmax{dy (xf) — hi(xf)}
and subdivideK'* into two subrectangles

Kk1={X€Kkixik <xf}, Ke={xekl:x

k
i = 'xik}'

k

e The starting point of the DCA in the solution of Problem (QB).

A comparison between the two algorithms through a lot of numerical examples
will be presented in Section 5.

In Algorithm BDCE it may happen that(K%) < g(K*) fori =1, 2.

To speed up the convergence of BDCE, it seems to be interesting for such a case
to perform an additional computation of lower bound by the bounding procedure
of BBU: after solving Problemg$QEX) (i = 1, 2) if B(K*) < B(K*), we solve
the problem

N 1
B(K*) :=min {5((1‘\ +pDx, x) + (b, x)
_ [%(a{‘+z{‘)xi - gaf‘f,-k] Haf < x < tfk}

i=1

and then seB(K*) := min{8(K*)}. The modified algorithm will be denoted by
BDCEU.

5. Computational results and conclusions

The algorithms were coded in Pascal under a Unix system. In this section we
present some computational tests on the performance of our algorithm for differ-
ent classes of test problems. All test problems are run in double precision on a
SUN/SPARC-20 station.

In Algorithms 1 and 2a, 2b whefx*| > 1 the stopping criterioar := || x*+1 —
x| < e was replaced byr : 4| x** — xk||2/||x¥||? < €. We tooke = 1078. For
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all test problems the initial point of Algorithm 1 was= e (it is a point in the
boundary ofE°).

5.1. SPIN-GLASS{-1,1} INDEFINITE QUADRATIC MINIMIZATION PROBLEM

In statistical physics, to study magnetic order of the magnetic material, one is led
to minimize the global energy of a complex physical system composed of magnetic
moments in interaction, called spin glass. The discrete mathematical model of this
problem is given by [5], [24]

N
min Z aijXiXj . Xj € {—1, 1}
i=1

(38)

wherex = (x1, ..., xy) IS a spin state vectoA = (g;;) is an interaction matrix.
ItisanN x N integral symmetric matrix which is almost block tridiagonal of the
form (N = n?).
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Here is an example with = 4, all nonzeraz;; are 1 or—1.

Furthermore, to study a change of phase of the magnetic material, physicists
need to draw the curve of minimal energies in function of the dedsityf negative
interactions(a;; = —1) with respect to the total of interactioris;; = 1 or —1):

g-— M@ pray=-11 |G a; =1
C MG ) ray=Tor =1} 4n?

where|{(i, j) : a;; = —1}| denotes the cardinal of the d€t, j) : a;; = —1).
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For solving problem (38) we first write it in the form
min{(x, (A —4l)x) +4:x € {—1,1}"}.
Then solving the concave minimization program
min{(x, (A —4D)x) +4:x € [-1,1]"} (39)

we obtain an optimal solution of (39) i1, 1} following Algorithm 2b.

Tables 1 and 2 indicate the performance of three algorithms BDCE, BBU and
BDCEU for two classes of spin-glass problems in which the sigm 0f« 0 was
chosen as follows:

Data for Table 1:
Forj=0,...,n—-1
Sifori =1+ jn,..., 14+ jn+n—2:

if i > N/4 thena,-.,url =1 elsea,'),'+]_ = -1 Aiy1,; = 4j i1
S2a14 jn 14 jntn—1 = At jntn—114jn ‘= 1,
Fori . =1,...,(n—Dn:
S3ifi > N/4 thena,’),H,i =1 elsea,',nﬂ- = -1, Auyii = Aipti = 1.
Fori:=1,... n:
S4if odd(i) thena; (,—1yn+i := 1 €lsea; —1ynti = —1; Ap—tyn+isi = Gi,(—Lynti-

The data for Table 2 was generated by replacing in S1, S3] B4with N /3 and
1 with —1, —1 with 1.

We find ane-solution of these problems with = 0.05. The abbreviations in
these Tables were the following: num — number of elenagnt&= —1 in the data;
iter — number of iterations; CPU — CPU time in seconds; NLB2 — number of how
many times the bounding procedure of BBU has been used in BDCEU; NALB2 —
number of how many times if the lower bounds obtained by this bounding proce-
dure is better than lower bounds in BDCE (i&K*) < B(K*') the optimal value
of (QE™)).

In the second class of problems, since BDCE converges after one iteration (ex-
cept the case wher®¥ = 36), it is not interesting to present the performance of
BDCEU in Table 2.

Computational results reported in these tables show that:

e BDCE is very efficient for Spin-glass problems, especially for the second
class (except wheN = 36).

e The use of second process of lower bounding (BDCEU) is interesting only
for N < 36.

e BBU is efficient whenN small (N < 36) but is not applicable to large-scale
problems.
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Table 1. The performance of BDCE, BDCEU and BBU for the first class of spin-glass

problems
BDCE BDCEU BBU

N num iter CPU iter CPU NLB2 NALB2 iter CPU
9 8 9 002 1 000 O 0 9 0.28
16 14 216 10.17 31 2.80 50 38 141 6.95
25 22 740 948 21 477 30 16 115 17.8
36 34 21750 6045 61 32.25 93 27 563 187.5
49 46 9 393 9 537 8 0 797 5883.78
64 60 17 15.48 17 22.08 26 10 1273 2020
81 76 10 12.22 10 19.33 11 1 3002 6097
100 96 30 89.92 24 109.83 40 14

121 116 10 28.98 10 49.63 11 0

144 138 26 25157 26 331.18 44 12

169 162 16 128.43 16 2084 23 7

196 190 19 228.35 19 373.37 30 3

225 218 19 288.62 19 503.35 30 2

256 248 24 53155 24 897.37 40 4

289 280 20 568.02 20 1016.05 32 0

324 316 25 812.02 25 1510.88 42 4

361 390 21 8778 21 1746 20 8

5.2. THE ‘DIFFICULT CLASS OF TEST PROBLEMSIN [30]

In this experiment we solved the following class of problems given by Pardalos et
al. in [30]

n n/2
min{f(x) =—nm — 1)2 Xi — in
i=1 i=1
+an,»xj +n2xixj:xe{0,l}"}. (40)
i<j i>j

Pardalos et al. regarded that adifficult class of test problemsince (40) has an
exponential number of discrete local minima. As indicated in [30]xferen, the
global solution of (40) is the point

x*=(1,...,1,0,...,07 (41)

with exactlyn/2 ones followed by:/2 zeros and any point with/2 ones is a
discrete local minimizer. Fol solving (40) we write this in the fof@) 1)-quadratic
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Table 2. The performance of BDCE and BBU for
the second class of spin- glass problems

BDCE BBU
N num iter CPU iter CPU
9 18 1 0.00 3 0.08
16 34 1 0.02 9 0.4
25 56 1 0.07 13 1.67
36 82 26509 10355 86 17.27
49 116 1 0.4 23 14.43
81 196 1 1.03 9 26.15
100 392 1 1.97 498 1337.68
121 298 1 3.33 53 360.32
144 356 1 5.28
169 422 1 815
196 490 1 13.4
225 566 1 15.82
256 646 1 32.58
289 732 1 32.58
324 822 1 45.38
361 920 1 59.95

problem (1) whered andb are defined by

A = —2n?I + 2nee’,
bj=-1, i=1...,n/2 bj=0, i=m/2)+1,...,n.

Here I denotes thgn x n)-identity matrix. We can easily see that the largest
eigenvalue ofA is zero. S is an negative semi- definite matrix and we are faced
with a concave minimization program. Then applying Algorithm BDCE to solve
the problem

min{%(x, Ax) + (b, x) : x € [0, 1]”} , (42)

and following Algorithm 2b, we obtain a solution {0, 1}".

For all test problems this algorithm stopped at the initialization step. The solu-
tion x° of problem(Q E?) is near to the optimal solution of (QB) and Algorithm
2b provided this solution after one iteration. So the efficiency of the branchy and
bound algorithm only depends upon the performance of BDCE for 21 problems
of ‘the difficult class of test problems’ (40). To demonstrate the efficiency of Al-
gorithm 1 we employed this and Safeguarding algorithym proposed by Moré &



200 LE THI HOAI AN AND PHAM DINH TAO

Table 3. A ‘difficult class of test problems’ [30]

n  BDCE-ALG1 BDCE-SFG| n BDCE-ALG1 BDCE-SFG

50 0.02 0.25 600 3.18 545.6
100 0.03 1.96 650 3.68 787.2
150 0.2 6.37 700 4.32 994.0
200 0.35 14.85 750 4.92 1233.5
250 0.53 32.77 800 5.57 1506.8
300 0.79 56.17 850 6.34 1822.6
350 1.05 101.43 900 7.49 2163.4
400 1.41 134.69 950 7.84 2633.4
450 1.66 220.01 | 1000 8.43 3022.7
500 2.17 269.3 1500 18.93
550 2.71 416.4

Abbreviations:BDCE-ALG1 — time in seconds of Algorithm BDCE with
subprocedure being Algorithm 1; BDCE-SFG — time in seconds of Algorithm
BDCE with subprocedure being Safeguarding algorithm.

Sorensen [29] for solving ProblefQ E®). In columns 4 and 5 of Table 3 we
reported CPU time (in seconds) of Algorithm BDCE using Algorithm 1 and Safe-
guarding subprocedure, respectively. In Safeguarding algorithm we d¢pok
107°.

It is interesting to note that in [30] Pardalos et al. reported that for solving
problems of this class the initial incumbent (obtained by heuristic algorithm) of
their branch and bound algorithm was the solution but it took excessively long to
prove the optimality.

5.3. A CLASS OF CONCAVE MINIMIZATION PROBLEM WHEREa IS A DENSE
RANDOM MATRIX

In the third experiment we solved 40 problems of the form
1
min {§<X’ Ax) : x € {0, 1}”} . (43)

We setA = PDPT for some orthogonal matri® and a diagonal matrip. P =
010203, WwheereQ; = I — 2ijf/||wj||2, Jj = 1,2, 3 and the components;
are random numbers {2, 2). The diagonal elements of the matiixare random
numbers i(—50,0).

We tooke = 0.01 whenn < 40 ands = 0.05 whenn > 40.

Table 4 indicates the performance (number of iteration and CPU times in sec-
onds) of three algorithms BDCE, BDCEU and BBU. As in Tables 1 and 2, we
present also the quantities NLB2 and NALB2 of BDCEU. We solved 5 problems
of each dimension and took the average result.
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Observe that for solving this class of problems BBU is more efficient than
BDCE. Thus, the use of BDCEU is interesting for BDCE.

Table 4. Comparison between BDCE, BDCEU, BBU in the third experiment

BDCE BDCEU BBU
n iter CPU iter CPU NLB2 NALB2 iter CPU
10 1 0.02 1 0.02 0 0 46 0.04
20 30 1.02 136 0.6 15 5 3 0.07
30 95.6 59 69 7.2 79.6 223 196 1.28
40 15 1.03 1.6 0.33 2 2 1 0.08
50 239 43.8 52.2 18.7 56 24.6 59 121
60 111.6 18.5 5 1.62 3 3 1 0.15
80 1229 425.2 256 203 39 17 36 15
100 1939 1139.22 105 107.6 150 56 16 10.1

In Table 5 we reported in more detail the performance of BDCE for this class.
The column labeleitA2b indicates the iteration for which Algorithm 2b provides
ane-global solution while the column labeled® (resp. OPT) indicates the upper
bound at step initialization (resp-optimal value).

Observing the quantitieg® in column 5 of Table 5 we see that Algorithm 2b
provides either am-solution or a very good approximation for the optimal value at
the very initialization step.

In the last experiment we study tyhe performance of BDCE for different toler-
ances and different branching procedures. In Table 6 we provide examples of the
form (43) with the same data as in Table 5 indicating the performance of Algorithm
BDCE for different tolerances. Table 6 indicates that in this experiment one can
obtain the same-optimal solution with different values af.

It is interesting to investigate the influence of the branching strategy used in
the algorithm. Table 7 gives the performance of Algorithm BDCE (number of
iterations and CPU time in seconds) using different branching procedures (Rule
1 and the combined Rule 2 — Rule 1) for 6 problems of the form

min{F (x) := (1/2)(x, Ax) : x € [-1, 1]}, (44)

whereA is negative semi-definite matrix.

The data was randomly generated in a similar way as described in the third
experiment. Here the components are random numbers in-60, 50) and the
diagonal elements of the matri® are random numbers ir-L00, 0). Of course
we took the same tolerange = 0.05) in two cases in order to obtain the same



Table 5. More details about the performance of BDCE

n iter CPU itA2b ay OPT n iter CPU itA2b 0 OPT
10 1 003 0 —97.398 -97.398 50 15 1.37 2 —845.89 —848.25
10 1 001 0 —147.684 —147.684 50 696 129.27 294 —565.08 —571.8771
10 1 002 9 -11682 -11836 50 9 0.78 0 -786.91 —786.91
20 81 29 2 -—277.82 -—28240 60 186  31.85 34 -819.38 —821.5455
20 7 014 0 -31036 -310.36 60 99  16.15 0 —805.85 —805.85
20 3 008 0 -301.08 -301.08 60 50 7.62 0 -868.14 —868.14
30 120 7.8 7 —421.61 —42465 80 1123 276.17 56 —1049.13 —1050.2282
30 10 092 0 -339.78 -339.78 80 1092 569.43 61 —987.76 —990.0716
30 157 1051 124 —371.33 —371.77 80 1473 430.00 131 —986.89 —994.67
40 43 288 0 -553.89 -553.89 100 1938 1138.32 6 —1197.47 —1203.22
40 1 010 0 —630.20 —630.20 100 2002 1142.22 2000—1266.20 —1268.41
40 1 013 0 -57509 —575.09

c0¢
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Table 6. Behavior of BDCE for different tolerances

e =0.01 e =0.05 ¢ =0.06
n iter CPU OPT iter CPU OPT iter CPU OPT

30 120 7.8 -—42465 18 0.72 —42432 2 0.07 -—-421.6
30 10 092 -339.78 9 0.63 -—-339.78 9 0.63 —339.78
30 157 1051 -371.32 9 035 -371.32 9 0.35 -371.32
40 944 742 -553.89 43 2.88 -553.89 30 2.40 -553.89
40 36 31 -63020 1 0.10 -630.20 2 0.10 —630.20
40 48 46 -575.09 1 0.13 -575.09 2 0.13 -575.09

Table 7. Behavior of BDCE for different branching procedures

Rule 1 Rule 2 —Rule 1 Rule 1 Rule 2 -Rule 1
n iter CPU iter CPU n iter CPU iter CPU

10 235 3.36 118 1.96 15 3197 60.92 93 4.85
10 542 3.92 24 0.49 15 18444 400.20 3 0.31
10 389 572 20 0.31 15 1642 2941 7 058

optimal solution. The rectangular bisection of a longest edge (Rule 1) is bad. The
main disadvantage of this is that the generated ellipsoids do not provide a good
lower bound: it is often happened thatK*) < B(K*)(i = 1, 2)). So the lower
bound is improved very very slowly.

Conclusion

We have proposed a new branch and bound algorithm based on d.c. optimization
algorithms and ellipsoidal technique for nonconvex quadratic programming prob-
lems with box constraints. The main contribution of this paper is to give a good
combination between local and global approaches: first we have provided a simple
and efficient algorithm using the information of bounding procedure for finding a
good local minima of box constrained quadratic problem; secondly, we have used
the elippsoidal technigue for bounding based on an efficient algorithm (the DCA)
for the ball constrained quadratic problem we have studied also the new branching
procedure in rectangular partition in order to well adapt to the new ellipsoidal
bounding technique.

Preliminary experiments showed the efficiency as well as the limit of BDCE.
The advantages are that either sspptimal solution or a good feasible point is
obtained rapidly by Algorithm 2a (or 2b) and thereby a lot of number of generated
ellipsoids are deleted from further consideration. Therefore, in general the algo-
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rithm is efficient for a proper choice of toleranegnevertheless this choice does
not present always exactly the quality of the solution obtained, see e.g. Table 6).
Moreover, the proposed algorithm is very efficient for some classes of problems
(Tables 1, 2, 3). Again, both Algorithm 1 and Algorithm 2a or 2b (the DCA)
for subproblems in bounding procedures are simple and not expensive. The limit
is that, as often happened in a branch and bound algorithm, the lower bound is
improved slowly. That is why we introduced the second process of lower bounding
(BDCEU) in such a case. In the study of the performance of BDCE, an open
guestion is that which ellipsoid can be chosen to warrant the best initial lower
bound? Meanwhile our ellipsoid technique seems to be quite suitable.
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